skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Commit Message Generation for Source Code Changes
Commit messages, which summarize the source code changes in natural language, are essential for program comprehension and software evolution understanding. Unfortunately, due to the lack of direct motivation, commit messages are sometimes neglected by developers, making it necessary to automatically generate such messages. State-of-the-art adopts learning based approaches such as neural machine translation models for the commit message generation problem. However, they tend to ignore the code structure information and suffer from the out-of-vocabulary issue. In this paper, we propose CoDiSum to address the above two limitations. In particular, we first extract both code structure and code semantics from the source code changes, and then jointly model these two sources of information so as to better learn the representations of the code changes. Moreover, we augment the model with copying mechanism to further mitigate the out-of-vocabulary issue. Experimental evaluations on real data demonstrate that the proposed approach significantly outperforms the state-of-the-art in terms of accurately generating the commit messages.  more » « less
Award ID(s):
1947135 1651203 1715385 1743040 2003924
PAR ID:
10159294
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
IJCAI
Page Range / eLocation ID:
3975 to 3981
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Automatically fixing software bugs is a challenging task. While recent work showed that natural language context is useful in guiding bug-fixing models, the approach required prompting developers to provide this context, which was simulated through commit messages written after the bug-fixing code changes were made. We instead propose using bug report discussions, which are available before the task is performed and are also naturally occurring, avoiding the need for any additional information from developers. For this, we augment standard bug-fixing datasets with bug report discussions. Using these newly compiled datasets, we demonstrate that various forms of natural language context derived from such discussions can aid bug-fixing, even leading to improved performance over using commit messages corresponding to the oracle bug-fixing commits. 
    more » « less
  2. Defect prediction aims to automatically identify potential defective code with minimal human intervention and has been widely studied in the literature. Just-in-Time (JIT) defect prediction focuses on program changes rather than whole programs, and has been widely adopted in continuous testing. CC2Vec, state-of-the-art JIT defect prediction tool, first constructs a hierarchical attention network (HAN) to learn distributed vector representations of both code additions and deletions, and then concatenates them with two other embedding vectors representing commit messages and overall code changes extracted by the existing DeepJIT approach to train a model for predicting whether a given commit is defective. Although CC2Vec has been shown to be the state of the art for JIT defect prediction, it was only evaluated on a limited dataset and not compared with all representative baselines. Therefore, to further investigate the efficacy and limitations of CC2Vec, this paper performs an extensive study of CC2Vec on a large-scale dataset with over 310,370 changes (8.3 X larger than the original CC2Vec dataset). More specifically, we also empirically compare CC2Vec against DeepJIT and representative traditional JIT defect prediction techniques. The experimental results show that CC2Vec cannot consistently outperform DeepJIT, and neither of them can consistently outperform traditional JIT defect prediction. We also investigate the impact of individual traditional defect prediction features and find that the added-line-number feature outperforms other traditional features. Inspired by this finding, we construct a simplistic JIT defect prediction approach which simply adopts the added-line- number feature with the logistic regression classifier. Surprisingly, such a simplistic approach can outperform CC2Vec and DeepJIT in defect prediction, and can be 81k X/120k X faster in training/testing. Furthermore, the paper also provides various practical guidelines for advancing JIT defect prediction in the near future. 
    more » « less
  3. Background: Some developer activity traditionally performed manually, such as making code commits, opening, managing, or closing issues is increasingly subject to automation in many OSS projects. Specifically, such activity is often performed by tools that react to events or run at specific times. We refer to such automation tools as bots and, in many software mining scenarios related to developer productivity or code quality it is desirable to identify bots in order to separate their actions from actions of individuals. Aim: Find an automated way of identifying bots and code committed by these bots, and to characterize the types of bots based on their activity patterns. Method and Result: We propose BIMAN, a systematic approach to detect bots using author names, commit messages, files modified by the commit, and projects associated with the ommits. For our test data, the value for AUC-ROC was 0.9. We also characterized these bots based on the time patterns of their code commits and the types of files modified, and found that they primarily work with documentation files and web pages, and these files are most prevalent in HTML and JavaScript ecosystems. We have compiled a shareable dataset containing detailed information about 461 bots we found (all of whom have more than 1000 commits) and 13,762,430 commits they created. 
    more » « less
  4. Code changes are often reviewed before they are deployed. Popular source control systems aid code review by presenting textual differences between old and new versions of the code, leaving developers with the difficult task of determining whether the differences actually produced the desired behavior. Fortunately, we can mine such information from code repositories. We propose aiding code review with inter-version semantic differential analysis. During review of a new commit, a developer is presented with summaries of both code differences and behavioral differences, which are expressed as diffs of likely invariants extracted by running the system's test cases. As a result, developers can more easily determine that the code changes produced the desired effect. We created an invariant-mining tool chain, GETTY, to support our concept of semantically-assisted code review. To validate our approach, 1) we applied GETTY to the commits of 6 popular open source projects, 2) we assessed the performance and cost of running GETTY in different configurations, and 3) we performed a comparative user study with 18 developers. Our results demonstrate that semantically-assisted code review is feasible, effective, and that real programmers can leverage it to improve the quality of their reviews. 
    more » « less
  5. null (Ed.)
    Source code (Context) and its parsed abstract syntax tree (AST; Structure) are two complementary representations of the same computer program. Traditionally, designers of machine learning models have relied predominantly either on Structure or Context. We propose a new model, which jointly learns on Context and Structure of source code. In contrast to previous approaches, our model uses only language-agnostic features, i.e., source code and features that can be computed directly from the AST. Besides obtaining state-of-the-art on monolingual code summarization on all five programming languages considered in this work, we propose the first multilingual code summarization model. We show that jointly training on non-parallel data from multiple programming languages improves results on all individual languages, where the strongest gains are on low-resource languages. Remarkably, multilingual training only from Context does not lead to the same improvements, highlighting the benefits of combining Structure and Context for representation learning on code. 
    more » « less