Natural language understanding for robotics can require substantial domain- and platform-specific engineering. For example, for mobile robots to pick-and-place objects in an environment to satisfy human commands, we can specify the language humans use to issue such commands, and connect concept words like red can to physical object properties. One way to alleviate this engineering for a new domain is to enable robots in human environments to adapt dynamically -- continually learning new language constructions and perceptual concepts. In this work, we present an end-to-end pipeline for translating natural language commands to discrete robot actions, and use clarification dialogs to jointly improve language parsing and concept grounding. We train and evaluate this agent in a virtual setting on Amazon Mechanical Turk, and we transfer the learned agent to a physical robot platform to demonstrate it in the real world.
more »
« less
Jointly Improving Parsing and Perception for Natural Language Commands through Human-Robot Dialog
In this work, we present methods for using human-robot dialog to improve language understanding for a mobile robot agent. The agent parses natural language to underlying semantic meanings and uses robotic sensors to create multi-modal models of perceptual concepts like red and heavy. The agent can be used for showing navigation routes, delivering objects to people, and relocating objects from one location to another. We use dialog clari_cation questions both to understand commands and to generate additional parsing training data. The agent employs opportunistic active learning to select questions about how words relate to objects, improving its understanding of perceptual concepts. We evaluated this agent on Amazon Mechanical Turk. After training on data induced from conversations, the agent reduced the number of dialog questions it asked while receiving higher usability ratings. Additionally, we demonstrated the agent on a robotic platform, where it learned new perceptual concepts on the y while completing a real-world task.
more »
« less
- PAR ID:
- 10160084
- Date Published:
- Journal Name:
- Journal of Artificial Intelligence Research
- Volume:
- 67
- ISSN:
- 1076-9757
- Page Range / eLocation ID:
- 327 to 374
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Active learning identifies data points from a pool of unlabeled examples whose labels, if made available, are most likely to improve the predictions of a supervised model. Most research on active learning assumes that an agent has access to the entire pool of unlabeled data and can ask for labels of any data points during an initial training phase. However, when incorporated in a larger task, an agent may only be able to query some subset of the unlabeled pool. An agent can also opportunistically query for labels that may be useful in the future, even if they are not immediately relevant. In this paper, we demonstrate that this type of opportunistic active learning can improve performance in grounding natural language descriptions of everyday objects---an important skill for home and office robots. We find, with a real robot in an object identification setting, that inquisitive behavior---asking users important questions about the meanings of words that may be off-topic for the current dialog---leads to identifying the correct object more often over time.more » « less
-
null (Ed.)The success of grounded language acquisition using perceptual data (e.g., in robotics) is affected by the complexity of both the perceptual concepts being learned, and the language describing those concepts. We present methods for analyzing this complexity, using both visual features and entropy-based evaluation of sentences. Our work illuminates core, quantifiable statistical differences in how language is used to describe different traits of objects, and the visual representation of those objects. The methods we use provide an additional analytical tool for research in perceptual language learning.more » « less
-
null (Ed.)Learning the meaning of grounded language---language that references a robot’s physical environment and perceptual data---is an important and increasingly widely studied problem in robotics and human-robot interaction. However, with a few exceptions, research in robotics has focused on learning groundings for a single natural language pertaining to rich perceptual data. We present experiments on taking an existing natural language grounding system designed for English and applying it to a novel multilingual corpus of descriptions of objects paired with RGB-D perceptual data. We demonstrate that this specific approach transfers well to different languages, but also present possible design constraints to consider for grounded language learning systems intended for robots that will function in a variety of linguistic settings.more » « less
-
null (Ed.)Intelligent systems need to be able to recover from mistakes, resolve uncertainty, and adapt to novel concepts not seen during training. Dialog interaction can enable this by the use of clarifications for correction and resolving uncertainty, and active learning queries to learn new concepts encountered during operation. Prior work on dialog systems has either focused on exclusively learning how to perform clarification/ information seeking, or to perform active learning. In this work, we train a hierarchical dialog policy to jointly perform both clarification and active learning in the context of an interactive language-based image retrieval task motivated by an on-line shopping application, and demonstrate that jointly learning dialog policies for clarification and active learning is more effective than the use of static dialog policies for one or both of these functions.more » « less
An official website of the United States government

