In this work, we present a methodology for predicting the optical performance impacts of random and structured MSF surface errors using pupil-difference probability distribution (PDPD) moments. In addition, we show that, for random mid-spatial frequency (MSF) surface errors, performance estimates from the PDPD moments converge to performance estimates that assume random statistics. Finally, we apply these methods to several MSF surface errors with different distributions and compare estimated optical performance values to predictions based on earlier methods assuming random error distributions.
more »
« less
Pupil-difference moments for estimating relative modulation from general mid-spatial frequency surface errors
Standard surface specifications for mid-spatial frequency (MSF) errors do not capture complex surface topography and often lose critical information by making simplifying assumptions about surface distribution and statistics. As a result, it is challenging to link surface specifications with optical performance. In this work, we present use of the pupil-difference probability distribution (PDPD) moments to assess general MSF surface errors and show how the PDPD moments relate to the relative modulation.
more »
« less
- PAR ID:
- 10410499
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Optics Letters
- Volume:
- 48
- Issue:
- 9
- ISSN:
- 0146-9592; OPLEDP
- Format(s):
- Medium: X Size: Article No. 2492
- Size(s):
- Article No. 2492
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We propose a workflow for modeling generalized mid-spatial frequency (MSF) errors in optical imaging systems. This workflow enables the classification of MSF distributions, filtering of bandlimited signatures, propagation of MSF errors to the exit pupil, and performance predictions that differentiate performance impacts due to the MSF distributions. We demonstrate the workflow by modeling the performance impacts of MSF errors for both transmissive and reflective imaging systems with near-diffraction-limited performance.more » « less
-
Specification and tolerancing of surfaces with mid-spatial frequency (MSF) errors are challenging and require new tools to augment simple surface statistics to better represent the structured characteristics of these errors. A novel surface specification method is developed by considering the structured and anisotropic nature of MSF errors and their impact on the modulation transfer function (MTF). The result is an intuitive plot of bandlimited RMS error values in polar coordinates which contains the surface error anisotropy information and enables an easy to understand acceptance criterion. Methods, application examples, and the connection of this surface specification approach to the MTF are discussed. © 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreementmore » « less
-
Mid-spatial frequency (MSF) errors impact optical performance. Conventional surface specification methods assume isotropy, which gives misleading results for surfaces with anisotropic errors. We propose an alternate surface specification method. © 2019 The Author(s) OCIS codes: (120.0120) Instrumentation, measurement, and metrology; (220.0220) Optical design and fabrication.more » « less
-
Abstract Considering the criticality of post-simulation debriefings for skill development, more evidence is needed to establish how specific feedback design features might influence teams’ cognitive and metacognitive processing. The current research therefore investigates the effects of multisource feedback (MSF) and guided facilitation with video review, for both cognitive processing and reflective (meta-cognitive) behaviors during post-simulation debriefings. With a sample of 174 s-year dental students, randomly assigned to 20 teams, the authors conducted high-fidelity simulations of patient emergencies, followed by post-simulation debriefings, using a 2 × 2 factorial design to test the effects of MSF (present vs. absent) and guided facilitation with video review (present vs. absent). According to an ordered network analysis, designed to examine feedback processing levels (individual vs. team) and depth (high vs. low), as well as the presence of metacognitive reflective behaviors (evaluative behaviors, exploration of alternatives, decision-oriented behaviors), teams that received both MSF and guided facilitation demonstrated significantly deeper, team-level processing and more frequent evaluative behaviors. Teams that received only guided facilitation exhibited the highest rates of low-level, individual processing. However, facilitation also produced an additive effect that fostered reflection and a shift from individual- to team-oriented processing. In contrast, MSF alone produced the lowest levels of evaluative behaviors; without facilitation, it does not support team reflection. These results establish that combining MSF with guided facilitation and video review creates synergistic effects for team reflection. Even if MSF can highlight perceived performance discrepancies, teams need facilitation to interpret and learn collaboratively from the feedback.more » « less
An official website of the United States government
