skip to main content

Title: Bayesian Neural Networks Uncertainty Quantification with Cubature Rules
Bayesian neural networks are powerful inference methods by accounting for randomness in the data and the network model. Uncertainty quantification at the output of neural networks is critical, especially for applications such as autonomous driving and hazardous weather forecasting. However, approaches for theoretical analysis of Bayesian neural networks remain limited. This paper makes a step forward towards mathematical quantification of uncertainty in neural network models and proposes a cubature-rule-based computationally efficient uncertainty quantification approach that captures layerwise uncertainties of Bayesian neural networks. The proposed approach approximates the first two moments of the posterior distribution of the parameters by propagating cubature points across the network nonlinearities. Simulation results show that the proposed approach can achieve more diverse layer-wise uncertainty quantification results of neural networks with a fast convergence rate.
; ; ; ; ;
Award ID(s):
Publication Date:
Journal Name:
the International Joint Conference on Neural Networks
Sponsoring Org:
National Science Foundation
More Like this
  1. Model confidence or uncertainty is critical in autonomous systems as they directly tie to the safety and trustworthiness of the system. The quantification of uncertainty in the output decisions of deep neural networks (DNNs) is a challenging problem. The Bayesian framework enables the estimation of the predictive uncertainty by introducing probability distributions over the (unknown) network weights; however, the propagation of these high-dimensional distributions through multiple layers and non-linear transformations is mathematically intractable. In this work, we propose an extended variational inference (eVI) framework for convolutional neural network (CNN) based on tensor Normal distributions (TNDs) defined over convolutional kernels. Ourmore »proposed eVI framework propagates the first two moments (mean and covariance) of these TNDs through all layers of the CNN. We employ first-order Taylor series linearization to approximate the mean and covariances passing through the non-linear activations. The uncertainty in the output decision is given by the propagated covariance of the predictive distribution. Furthermore, we show, through extensive simulations on the MNIST and CIFAR-10 datasets, that the CNN becomes more robust to Gaussian noise and adversarial attacks.« less
  2. This paper presents a novel framework for training convolutional neural networks (CNNs) to quantify the impact of gradual and abrupt uncertainties in the form of adversarial attacks. Uncertainty quantification is achieved by combining the CNN with a Gaussian process (GP) classifier algorithm. The variance of the GP quantifies the impact on the uncertainties and especially their effect on the object classification tasks. Learning from uncertainty provides the proposed CNN-GP framework with flexibility, reliability and robustness to adversarial attacks. The proposed approach includes training the network under noisy conditions. This is accomplished by comparing predictions with classification labels via the Kullback-Leiblermore »divergence, Wasserstein distance and maximum correntropy. The network performance is tested on the classical MNIST, Fashion-MNIST, CIFAR10 and CIFAR 100 datasets. Further tests on robustness to both black-box and white-box attacks are also carried out for MNIST. The results show that the testing accuracy improves for networks that backpropogate uncertainty as compared to methods that do not quantify the impact of uncertainties. A comparison with a state-of-art Monte Carlo dropout method is also presented and the outperformance of the CNN-GP framework with respect to reliability and computational efficiency is demonstrated.« less
  3. Abstract Deep neural networks (DNNs) have achieved state-of-the-art performance in many important domains, including medical diagnosis, security, and autonomous driving. In domains where safety is highly critical, an erroneous decision can result in serious consequences. While a perfect prediction accuracy is not always achievable, recent work on Bayesian deep networks shows that it is possible to know when DNNs are more likely to make mistakes. Knowing what DNNs do not know is desirable to increase the safety of deep learning technology in sensitive applications; Bayesian neural networks attempt to address this challenge. Traditional approaches are computationally intractable and do notmore »scale well to large, complex neural network architectures. In this paper, we develop a theoretical framework to approximate Bayesian inference for DNNs by imposing a Bernoulli distribution on the model weights. This method called Monte Carlo DropConnect (MC-DropConnect) gives us a tool to represent the model uncertainty with little change in the overall model structure or computational cost. We extensively validate the proposed algorithm on multiple network architectures and datasets for classification and semantic segmentation tasks. We also propose new metrics to quantify uncertainty estimates. This enables an objective comparison between MC-DropConnect and prior approaches. Our empirical results demonstrate that the proposed framework yields significant improvement in both prediction accuracy and uncertainty estimation quality compared to the state of the art.« less
  4. Joan Bruna, Jan S (Ed.)
    In recent years, the field of machine learning has made phenomenal progress in the pursuit of simulating real-world data generation processes. One notable example of such success is the variational autoencoder (VAE). In this work, with a small shift in perspective, we leverage and adapt VAEs for a different purpose: uncertainty quantification in scientific inverse problems. We introduce UQ-VAE: a flexible, adaptive, hybrid data/model-constrained framework for training neural networks capable of rapid modelling of the posterior distribution representing the unknown parameter of interest. Specifically, from divergence-based variational inference, our framework is derived such that most of the information usually presentmore »in scientific inverse problems is fully utilized in the training procedure. Additionally, this framework includes an adjustable hyperparameter that allows selection of the notion of distance between the posterior model and the target distribution. This introduces more flexibility in controlling how optimization directs the learning of the posterior model. Further, this framework possesses an inherent adaptive optimization property that emerges through the learning of the posterior uncertainty. Numerical results for an elliptic PDE-constrained Bayesian inverse problem are provided to verify the proposed framework.« less
  5. Synthetic aperture radar (SAR) image classification is a challenging problem due to the complex imaging mechanism as well as the random speckle noise, which affects radar image interpretation. Recently, convolutional neural networks (CNNs) have been shown to outperform previous state-of-the-art techniques in computer vision tasks owing to their ability to learn relevant features from the data. However, CNNs in particular and neural networks, in general, lack uncertainty quantification and can be easily deceived by adversarial attacks. This paper proposes Bayes-SAR Net, a Bayesian CNN that can perform robust SAR image classification while quantifying the uncertainty or confidence of the networkmore »in its decision. Bayes-SAR Net propagates the first two moments (mean and covariance) of the approximate posterior distribution of the network parameters given the data and obtains a predictive mean and covariance of the classification output. Experiments, using the benchmark datasets Flevoland and Oberpfaffenhofen, show superior performance and robustness to Gaussian noise and adversarial attacks, as compared to the SAR-Net homologue. Bayes-SAR Net achieves a test accuracy that is around 10% higher in the case of adversarial perturbation (levels > 0.05).« less