We consider the task of measuring time with probabilistic threshold gates implemented by bio-inspired spiking neurons. In the model of spiking neural networks, network evolves in discrete rounds, where in each round, neurons fire in pulses in response to a sufficiently high membrane potential. This potential is induced by spikes from neighboring neurons that fired in the previous round, which can have either an excitatory or inhibitory effect. Discovering the underlying mechanisms by which the brain perceives the duration of time is one of the largest open enigma in computational neuroscience. To gain a better algorithmic understanding onto these processes, we introduce the neural timer problem. In this problem, one is given a time parameter t, an input neuron x, and an output neuron y. It is then required to design a minimum sized neural network (measured by the number of auxiliary neurons) in which every spike from x in a given round i, makes the output y fire for the subsequent t consecutive rounds.We first consider a deterministic implementation of a neural timer and show that Θ(logt)(deterministic) threshold gates are both sufficient and necessary. This raised the question of whether randomness can be leveraged to reduce the number of neurons. We answer this question in the affirmative by considering neural timers with spiking neurons where the neuron y is required to fire for t consecutive rounds with probability at least 1−δ, and should stop firing after at most 2 t rounds with probability 1−δ for some input parameter δ∈(0,1). Our key result is a construction of a neural timer with O(log log 1/δ) spiking neurons. Interestingly, this construction uses only one spiking neuron, while the remaining neurons can be deterministic threshold gates. We complement this construction with a matching lower bound of Ω(min{log log 1/δ,logt}) neurons. This provides the first separation between deterministic and randomized constructions in the setting of spiking neural networks.Finally, we demonstrate the usefulness of compressed counting networks for synchronizing neural networks. In the spirit of distributed synchronizers [Awerbuch-Peleg, FOCS’90], we provide a general transformation (or simulation) that can take any synchronized network solution and simulate it in an asynchronous setting (where edges have arbitrary response latencies) while incurring a small overhead w.r.t the number of neurons and computation time.
more »
« less
Random Sketching, Clustering, and Short-Term Memory in Spiking Neural Networks
We study input compression in a biologically inspired model of neural computation. We demonstrate that a network consisting of a random projection step (implemented via random synaptic connectivity) followed by a sparsification step (implemented via winner-take-all competition) can reduce well-separated high-dimensional input vectors to well-separated low-dimensional vectors. By augmenting our network with a third module, we can efficiently map each input (along with any small perturbations of the input) to a unique representative neuron, solving a neural clustering problem. Both the size of our network and its processing time, i.e., the time it takes the network to compute the compressed output given a presented input, are independent of the (potentially large) dimension of the input patterns and depend only on the number of distinct inputs that the network must encode and the pairwise relative Hamming distance between these inputs. The first two steps of our construction mirror known biological networks, for example, in the fruit fly olfactory system [Caron et al., 2013; Lin et al., 2014; Dasgupta et al., 2017]. Our analysis helps provide a theoretical understanding of these networks and lay a foundation for how random compression and input memorization may be implemented in biological neural networks. Technically, a contribution in our network design is the implementation of a short-term memory. Our network can be given a desired memory time t_m as an input parameter and satisfies the following with high probability: any pattern presented several times within a time window of t_m rounds will be mapped to a single representative output neuron. However, a pattern not presented for c⋅t_m rounds for some constant c>1 will be "forgotten", and its representative output neuron will be released, to accommodate newly introduced patterns.
more »
« less
- Award ID(s):
- 1810758
- PAR ID:
- 10161881
- Date Published:
- Journal Name:
- 11th Innovations in Theoretical Computer Science (ITCS 2020)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We consider the task of measuring time with probabilistic threshold gates implemented by bio-inspired spiking neurons. In the model of spiking neural networks, network evolves in discrete rounds, where in each round, neurons fire in pulses in response to a sufficiently high membrane potential. This potential is induced by spikes from neighboring neurons that fired in the previous round, which can have either an excitatory or inhibitory effect. We first consider a deterministic implementation of a neural timer and show that Θ(logt) (deterministic) threshold gates are both sufficient and necessary. This raised the question of whether randomness can be leveraged to reduce the number of neurons. We answer this question in the affirmative by considering neural timers with spiking neurons where the neuron y is required to fire for t consecutive rounds with probability at least 1−δ, and should stop firing after at most 2t rounds with probability 1−δ for some input parameter δ∈(0,1). Our key result is a construction of a neural timer with O(loglog1/δ) spiking neurons. Interestingly, this construction uses only one spiking neuron, while the remaining neurons can be deterministic threshold gates. We complement this construction with a matching lower bound of Ω(min{loglog1/δ,logt}) neurons. This provides the first separation between deterministic and randomized constructions in the setting of spiking neural networks. Finally, we demonstrate the usefulness of compressed counting networks for synchronizing neural networks.more » « less
-
null (Ed.)Variable binding is a cornerstone of symbolic reasoning and cognition. But how binding can be implemented in connectionist models has puzzled neuroscientists, cognitive psychologists, and neural network researchers for many decades. One type of connectionist model that naturally includes a binding operation is vector symbolic architectures (VSAs). In contrast to other proposals for variable binding, the binding operation in VSAs is dimensionality-preserving, which enables representing complex hierarchical data structures, such as trees, while avoiding a combinatoric expansion of dimensionality. Classical VSAs encode symbols by dense randomized vectors, in which information is distributed throughout the entire neuron population. By contrast, in the brain, features are encoded more locally, by the activity of single neurons or small groups of neurons, often forming sparse vectors of neural activation. Following Laiho et al. (2015), we explore symbolic reasoning with a special case of sparse distributed representations. Using techniques from compressed sensing, we first show that variable binding in classical VSAs is mathematically equivalent to tensor product binding between sparse feature vectors, another well-known binding operation which increases dimensionality. This theoretical result motivates us to study two dimensionality-preserving binding methods that include a reduction of the tensor matrix into a single sparse vector. One binding method for general sparse vectors uses random projections, the other, block-local circular convolution, is defined for sparse vectors with block structure, sparse block-codes. Our experiments reveal that block-local circular convolution binding has ideal properties, whereas random projection based binding also works, but is lossy. We demonstrate in example applications that a VSA with block-local circular convolution and sparse block-codes reaches similar performance as classical VSAs. Finally, we discuss our results in the context of neuroscience and neural networks.more » « less
-
Abstract Deep neural networks such as GoogLeNet, ResNet, and BERT have achieved impressive performance in tasks such as image and text classification. To understand how such performance is achieved, we probe a trained deep neural network by studying neuron activations, i.e.combinations of neuron firings, at various layers of the network in response to a particular input. With a large number of inputs, we aim to obtain a global view of what neurons detect by studying their activations. In particular, we develop visualizations that show the shape of the activation space, the organizational principle behind neuron activations, and the relationships of these activations within a layer. Applying tools from topological data analysis, we presentTopoAct, a visual exploration system to study topological summaries of activation vectors. We present exploration scenarios usingTopoActthat provide valuable insights into learned representations of neural networks. We expectTopoActto give a topological perspective that enriches the current toolbox of neural network analysis, and to provide a basis for network architecture diagnosis and data anomaly detection.more » « less
-
Traditional Deep Neural Network (DNN) security is mostly related to the well-known adversarial input example attack.Recently, another dimension of adversarial attack, namely, attack on DNN weight parameters, has been shown to be very powerful. Asa representative one, the Bit-Flip based adversarial weight Attack (BFA) injects an extremely small amount of faults into weight parameters to hijack the executing DNN function. Prior works of BFA focus on un-targeted attacks that can hack all inputs into a random output class by flipping a very small number of weight bits stored in computer memory. This paper proposes the first work oftargetedBFA based (T-BFA) adversarial weight attack on DNNs, which can intentionally mislead selected inputs to a target output class. The objective is achieved by identifying the weight bits that are highly associated with classification of a targeted output through a class-dependent weight bit searching algorithm. Our proposed T-BFA performance is successfully demonstrated on multiple DNN architectures for image classification tasks. For example, by merely flipping 27 out of 88 million weight bits of ResNet-18, our T-BFA can misclassify all the images from Hen class into Goose class (i.e., 100% attack success rate) in ImageNet dataset, while maintaining 59.35% validation accuracy.more » « less
An official website of the United States government

