skip to main content


Title: Noise reduction in supercontinuum sources for OCT by single-pulse spectral normalization

Supercontinuum (SC) sources offer high illumination power from a single-mode fiber with large spectral bandwidth including the visible spectrum, which is a growing application area for optical coherence tomography (OCT). However, SC spectra suffer from pulse-to-pulse variations, increasing noise in the resulting images. By simultaneously collecting a normalization spectrum, OCT image noise can be reduced by more than half (7 dB) for single pulses without any pulse averaging using only simple optical components.

 
more » « less
Award ID(s):
1845801
NSF-PAR ID:
10161942
Author(s) / Creator(s):
; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Applied Optics
Volume:
59
Issue:
18
ISSN:
1559-128X; APOPAI
Page Range / eLocation ID:
Article No. 5521
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A spatial heterodyne Raman spectrometer (SHRS), constructed using a modular optical cage and lens tube system, is described for use with a commercial silica and a custom single-crystal (SC) sapphire fiber Raman probe. The utility of these fiber-coupled SHRS chemical sensors is demonstrated using 532 nm laser excitation for acquiring Raman measurements of solid (sulfur) and liquid (cyclohexane) Raman standards as well as real-world, plastic-bonded explosives (PBX) comprising 1,3,5- triamino- 2,4,6- trinitrobenzene (TATB) and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) energetic materials. The SHRS is a fixed grating-based dispersive interferometer equipped with an array detector. Each Raman spectrum was extracted from its corresponding fringe image (i.e., interferogram) using a Fourier transform method. Raman measurements were acquired with the SHRS Littrow wavelength set at the laser excitation wavelength over a spectral range of ∼1750 cm−1with a spectral resolution of ∼8 cm−1for sapphire and ∼10 cm−1for silica fiber probes. The large aperture of the SHRS allows much larger fiber diameters to be used without degrading spectral resolution as demonstrated with the larger sapphire collection fiber diameter (330 μm) compared to the silica fiber (100 μm). Unlike the dual silica fiber Raman probe, the dual sapphire fiber Raman probe did not include filtering at the fiber probe tip nearest the sample. Even so, SC sapphire fiber probe measurements produced less background than silica fibers allowing Raman measurements as close as ∼85 cm−1to the excitation laser. Despite the short lengths of sapphire fiber used to construct the sapphire probe, well-defined, sharp sapphire Raman bands at 420, 580, and 750 cm−1were observed in the SHRS spectra of cyclohexane and the highly fluorescent HMX-based PBX. SHRS measurements of the latter produced low background interference in the extracted Raman spectrum because the broad band fluorescence (i.e., a direct current, or DC, component) does not contribute to the interferogram intensity (i.e., the alternating current, or AC, component). SHRS spectral resolution, throughput, and signal-to-noise ratio are also discussed along with the merits of using sapphire Raman bands as internal performance references and as internal wavelength calibration standards in Raman measurements.

     
    more » « less
  2. We experimentally demonstrate long-wavelength-infrared (LWIR) femtosecond filamentation in solids. Systematic investigations of supercontinuum (SC) generation and self-compression of the LWIR pulses assisted by laser filamentation are performed in bulk KrS-5 and ZnSe, pumped by∼<#comment/>145fs, 9 µm, 10 µJ pulses from an optical parametric chirped-pulse amplifier operating at 10 kHz of repetition rate. Multi-octave SC spectra are demonstrated in both materials. While forming stable single filament, 1.5 cycle LWIR pulses with 4.5 µJ output pulse energy are produced via soliton-like self-compression in a 5 mm thick KrS-5. The experimental results quantitatively agree well with the numerical simulation based on the unidirectional pulse propagation equation. This work shows the experimental feasibility of high-energy, near-single-cycle LWIR light bullet generation in solids.

     
    more » « less
  3. Abstract

    Supernova (SN) 1987A is the nearest supernova in ∼400 yr. Using the JWST MIRI Medium Resolution Spectrograph, we spatially resolved the ejecta, equatorial ring (ER), and outer rings in the mid-infrared 12,927 days (35.4 yr) after the explosion. The spectra are rich in line and dust continuum emission, both in the ejecta and the ring. The broad emission lines (280–380 km s−1FWHM) that are seen from all singly-ionized species originate from the expanding ER, with properties consistent with dense post-shock cooling gas. Narrower emission lines (100–170 km s−1FWHM) are seen from species originating from a more extended lower-density component whose high ionization may have been produced by shocks progressing through the ER or by the UV radiation pulse associated with the original supernova event. The asymmetric east–west dust emission in the ER has continued to fade, with constant temperature, signifying a reduction in dust mass. Small grains in the ER are preferentially destroyed, with larger grains from the progenitor surviving the transition from SN into SNR. The ER dust is fit with a single set of optical constants, eliminating the need for a secondary featureless hot dust component. We find several broad ejecta emission lines from [Neii], [Arii], [Feii], and [Niii]. With the exception of [Feii] 25.99μm, these all originate from the ejecta close to the ring and are likely to be excited by X-rays from the interaction. The [Feii] 5.34 to 25.99μm line ratio indicates a temperature of only a few hundred K in the inner core, which is consistent with being powered by44Ti decay.

     
    more » « less
  4. Abstract

    Optical coherence tomography (OCT) is widely used for biomedical imaging and clinical diagnosis. However, speckle noise is a key factor affecting OCT image quality. Here, we developed a custom generative adversarial network (GAN) to denoise OCT images. A speckle‐modulating OCT (SM‐OCT) was built to generate low speckle images to be used as the ground truth. In total, 210 000 SM‐OCT images were used for training and validating the neural network model, which we call SM‐GAN. The performance of the SM‐GAN method was further demonstrated using online benchmark retinal images, 3D OCT images acquired from human fingers and OCT videos of a beating fruit fly heart. The denoise performance of the SM‐GAN model was compared to traditional OCT denoising methods and other state‐of‐the‐art deep learning based denoise networks. We conclude that the SM‐GAN model presented here can effectively reduce speckle noise in OCT images and videos while maintaining spatial and temporal resolutions.

     
    more » « less
  5. Optical coherence tomography (OCT) has seen widespread success as anin vivoclinical diagnostic 3D imaging modality, impacting areas including ophthalmology, cardiology, and gastroenterology. Despite its many advantages, such as high sensitivity, speed, and depth penetration, OCT suffers from several shortcomings that ultimately limit its utility as a 3D microscopy tool, such as its pervasive coherent speckle noise and poor lateral resolution required to maintain millimeter-scale imaging depths. Here, we present 3D optical coherence refraction tomography (OCRT), a computational extension of OCT that synthesizes an incoherent contrast mechanism by combining multiple OCT volumes, acquired across two rotation axes, to form a resolution-enhanced, speckle-reduced, refraction-corrected 3D reconstruction. Our label-free computational 3D microscope features a novel optical design incorporating a parabolic mirror to enable the capture of 5D plenoptic datasets, consisting of millimetric 3D fields of view over up to±<#comment/>75∘<#comment/>without moving the sample. We demonstrate that 3D OCRT reveals 3D features unobserved by conventional OCT in fruit fly, zebrafish, and mouse samples.

     
    more » « less