ABSTRACT I report the discovery of a stellar stream (Sutlej) using Gaia DR3 (third data release) proper motions and XP metallicities located $$\sim$$15° north of the Small Magellanic Cloud (SMC). The stream is composed of two parallel linear components (‘branches’) approximately $$\sim$$8° × 0.6° in size and separated by 2.5°. The stars have a mean proper motion of ($$\mu _{\rm RA},\mu _{\rm Dec.}$$) = (+0.08 mas yr−1, −1.41 mas yr−1), which is quite similar to the proper motion of stars on the western side of the SMC. The colour–magnitude diagram of the stream stars has a clear red giant branch, horizontal branch, and main-sequence turn-off that are well matched by a parsec isochrone of 10 Gyr, [Fe/H] = −1.8 at 32 kpc, and a total stellar mass of $$\sim$$33 000 M$$_{\odot }$$. The stream is spread out over an area of 9.6 deg2 and has a surface brightness of 32.5 mag arcsec−2. The metallicity of the stream stars from Gaia XP spectra extends over $-2.5$$\le$$ [M/H] $$\le$$-1.0$ with a median of [M/H] = −1.8. The tangential velocity of the stream stars is 214 km s−1 compared to the values of 448 km s−1 for the Large Magellanic Cloud and 428 km s−1 for the SMC. While the radial velocity of the stream is not yet known, a comparison of the space velocities using a range of assumed radial velocities shows that the stream is unlikely to be associated with the Magellanic Clouds. The tangential velocity vector is misaligned with the stream by nearly 90°, which might indicate an important gravitational influence from the nearby Magellanic Clouds.
more »
« less
Chemo-dynamical properties of the Anticenter Stream: a surviving disc fossil from a past satellite interaction.
Abstract Using Gaia DR2, we trace the Anticenter Stream (ACS) in various stellar populations across the sky and find that it is kinematically and spatially decoupled from the Monoceros Ring. Using stars from lamost and segue, we show that the ACS is systematically more metal-poor than Monoceros by 0.1 dex with indications of a narrower metallicity spread. Furthermore, the ACS is predominantly populated of old stars ($$\sim 10\, \rm {Gyr}$$), whereas Monoceros has a pronounced tail of younger stars ($$6-10\, \rm {Gyr}$$) as revealed by their cumulative age distributions. Put together, all of this evidence support predictions from simulations of the interaction of the Sagittarius dwarf with the Milky Way, which argue that the Anticenter Stream (ACS) is the remains of a tidal tail of the Galaxy excited during Sgr’s first pericentric passage after it crossed the virial radius, whereas Monoceros consists of the composite stellar populations excited during the more extended phases of the interaction. Importantly, the ACS can be viewed as a stand-alone fossil of the chemical enrichment history of the Galactic disc.
more »
« less
- Award ID(s):
- 1813881
- PAR ID:
- 10162362
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society: Letters
- ISSN:
- 1745-3925
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT Surveys of the Milky Way (MW) and M31 enable detailed studies of stellar populations across ages and metallicities, with the goal of reconstructing formation histories across cosmic time. These surveys motivate key questions for galactic archaeology in a cosmological context: When did the main progenitor of an MW/M31-mass galaxy form, and what were the galactic building blocks that formed it? We investigate the formation times and progenitor galaxies of MW/M31-mass galaxies using the Feedback In Realistic Environments-2 cosmological simulations, including six isolated MW/M31-mass galaxies and six galaxies in Local Group (LG)-like pairs at z = 0. We examine main progenitor ‘formation’ based on two metrics: (1) transition from primarily ex-situ to in-situ stellar mass growth and (2) mass dominance compared to other progenitors. We find that the main progenitor of an MW/M31-mass galaxy emerged typically at z ∼ 3–4 ($$11.6\!\!-\!\!12.2\, \rm {Gyr}$$ ago), while stars in the bulge region (inner 2 kpc) at z = 0 formed primarily in a single main progenitor at z ≲ 5 ($${\lesssim} \!12.6\, \rm {Gyr}$$ ago). Compared with isolated hosts, the main progenitors of LG-like paired hosts emerged significantly earlier (Δz ∼ 2, $$\Delta t\!\sim \!1.6\, \rm {Gyr}$$), with ∼4× higher stellar mass at all z ≳ 4 ($${\gtrsim} \!12.2\, \rm {Gyr}$$ ago). This highlights the importance of environment in MW/M31-mass galaxy formation, especially at early times. On average, about 100 galaxies with $$\rm {\it{ M}}_\rm {star}\!\gtrsim \!10^5\, \rm {M}_\odot$$ went into building a typical MW/M31-mass system. Thus, surviving satellites represent a highly incomplete census (by ∼5×) of the progenitor population.more » « less
-
ABSTRACT The formation and evolution of local brightest cluster galaxies (BCGs) is investigated by determining the stellar populations and dynamics from the galaxy core, through the outskirts and into the intracluster light (ICL). Integral spectroscopy of 23 BCGs observed out to $$4\, r_{e}$$ is collected and high signal-to-noise regions are identified. Stellar population synthesis codes are used to determine the age, metallicity, velocity, and velocity dispersion of stars within each region. The ICL spectra are best modelled with populations that are younger and less metal-rich than those of the BCG cores. The average BCG core age of the sample is $$\rm 13.3\pm 2.8\, Gyr$$ and the average metallicity is $$\rm [Fe/H] = 0.30\pm 0.09$$, whereas for the ICL the average age is $$\rm 9.2\pm 3.5\, Gyr$$ and the average metallicity is $$\rm [Fe/H] = 0.18\pm 0.16$$. The velocity dispersion profile is seen to be rising or flat in most of the sample (17/23), and those with rising values reach the value of the host cluster’s velocity dispersion in several cases. The most extended BCGs are closest to the peak of the cluster’s X-ray luminosity. The results are consistent with the idea that the BCG cores and inner regions formed quickly and long ago, with the outer regions and ICL forming more recently, and continuing to assemble through minor merging. Any recent star formation in the BCGs is a minor component, and is associated with the cluster cool core status.more » « less
-
ABSTRACT Stellar ages are critical for understanding the temporal evolution of a galaxy. We calculate the ages of over 6000 red giant branch stars in the Large Magellanic Cloud (LMC) observed with SDSS-IV / APOGEE-S. Ages are derived using multiband photometry, spectroscopic parameters ($$\rm T_{eff}$$, $$\log {g}$$, [Fe/H], and [$$\alpha$$/Fe]) and stellar isochrones and the assumption that the stars lie in a thin inclined plane to get accurate distances. The isochrone age and extinction are varied until a best match is found for the observed photometry. We perform validation using the APOKASC sample, which has asteroseismic masses and accurate ages, and find that our uncertainties are $$\sim$$20 per cent and range from $$\sim$$1–3 Gyr for the calculated ages (most reliable below 10 Gyr). Here we present the LMC age map as well as the age–radius relation and an accurate age–metallicity relation (AMR). The age map and age–radius relation reveal that recent star formation in the galaxy was more centrally located and that there is a slight dichotomy between the north and south with the northern fields being slightly younger. The northern fields that cover a known spiral arm have median ages of $$\gtrsim$$2 Gyr, which is the time when an interaction with the Small Magellanic Cloud (SMC) is suggested to have happened. The AMR is mostly flat especially for older ages although recently (about 2.0–2.5 Gyr ago) there is an increase in the median [Fe/H]. Based on the time frame, this might also be attributed to the close interaction between the LMC and SMC.more » « less
-
null (Ed.)ABSTRACT Planck data provide precise constraints on cosmological parameters when assuming the base ΛCDM model, including a 0.17 per cent measurement of the age of the Universe, $$t_0=13.797 \pm 0.023\, {\rm Gyr}$$. However, the persistence of the ‘Hubble tension’ calls the base ΛCDM model’s completeness into question and has spurred interest in models such as early dark energy (EDE) that modify the assumed expansion history of the Universe. We investigate the effect of EDE on the redshift–time relation z↔t and find that it differs from the base ΛCDM model by at least $${\approx } 4{{\ \rm per\ cent}}$$ at all t and z. As long as EDE remains observationally viable, any inferred t ← z or z ← t quoted to a higher level of precision do not reflect the current status of our understanding of cosmology. This uncertainty has important astrophysical implications: the reionization epoch – 10 > z > 6 – corresponds to disjoint lookback time periods in the base ΛCDM and EDE models, and the EDE value of t0 = 13.25 ± 0.17 Gyr is in tension with published ages of some stars, star clusters, and ultrafaint dwarf galaxies. However, most published stellar ages do not include an uncertainty in accuracy (due to, e.g. uncertain distances and stellar physics) that is estimated to be $$\sim 7\!-\!10{{\ \rm per\ cent}}$$, potentially reconciling stellar ages with $$t_{0,\rm EDE}$$. We discuss how the big data era for stars is providing extremely precise ages ($$\lt 1{{\ \rm per\ cent}}$$) and how improved distances and treatment of stellar physics such as convection could result in ages accurate to $$4\!-\!5{{\ \rm per\ cent}}$$, comparable to the current accuracy of t↔z. Such precise and accurate stellar ages can provide detailed insight into the high-redshift Universe independent of a cosmological model.more » « less