skip to main content


Title: Chemo-dynamical properties of the Anticenter Stream: a surviving disc fossil from a past satellite interaction.
Abstract Using Gaia DR2, we trace the Anticenter Stream (ACS) in various stellar populations across the sky and find that it is kinematically and spatially decoupled from the Monoceros Ring. Using stars from lamost and segue, we show that the ACS is systematically more metal-poor than Monoceros by 0.1 dex with indications of a narrower metallicity spread. Furthermore, the ACS is predominantly populated of old stars ($\sim 10\, \rm {Gyr}$), whereas Monoceros has a pronounced tail of younger stars ($6-10\, \rm {Gyr}$) as revealed by their cumulative age distributions. Put together, all of this evidence support predictions from simulations of the interaction of the Sagittarius dwarf with the Milky Way, which argue that the Anticenter Stream (ACS) is the remains of a tidal tail of the Galaxy excited during Sgr’s first pericentric passage after it crossed the virial radius, whereas Monoceros consists of the composite stellar populations excited during the more extended phases of the interaction. Importantly, the ACS can be viewed as a stand-alone fossil of the chemical enrichment history of the Galactic disc.  more » « less
Award ID(s):
1813881
NSF-PAR ID:
10162362
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society: Letters
ISSN:
1745-3925
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT

    Observational studies are finding stars believed to be relics of the earliest stages of hierarchical mass assembly of the Milky Way (i.e. proto-galaxy). In this work, we contextualize these findings by studying the masses, ages, spatial distributions, morphology, kinematics, and chemical compositions of proto-galaxy populations from the 13 Milky Way (MW)-mass galaxies from the FIRE-2 cosmological zoom-in simulations. Our findings indicate that proto-Milky Way populations: (i) can have a stellar mass range between 1 × 108 < M⋆ < 2 × 1010 [M⊙], a virial mass range between 3 × 1010 < M⋆ < 6 × 1011 [M⊙], and be as young as 8 ≲ Age ≲ 12.8 [Gyr] (1 ≲ z ≲ 6); (ii) are pre-dominantly centrally concentrated, with $\sim 50~{{\ \rm per\ cent}}$ of the stars contained within 5–10 kpc; (iii) on average show weak but systematic net rotation in the plane of the host’s disc at z = 0 (i.e. 0.25 ≲ 〈κ/κdisc〉 ≲ 0.8); (iv) present [α/Fe]-[Fe/H] compositions that overlap with the metal-poor tail of the host’s old disc; and (v) tend to assemble slightly earlier in Local Group-like environments than in systems in isolation. Interestingly, we find that $\sim 60~{{\ \rm per\ cent}}$ of the proto-Milky Way galaxies are comprised by 1 dominant system (1/5 ≲M⋆/M⋆, proto-MilkyWay≲ 4/5) and 4–5 lower mass systems (M⋆/M⋆, proto-MilkyWay≲ 1/10); the other $\sim 40~{{\ \rm per\ cent}}$ are comprised by 2 dominant systems and 3–4 lower mass systems. These massive/dominant proto-Milky Way fragments can be distinguished from the lower mass ones in chemical-kinematic samples, but appear (qualitatively) indistinguishable from one another. Our results could help observational studies disentangle if the Milky Way formed from one or two dominant systems.

     
    more » « less
  2. ABSTRACT

    A variety of observational campaigns seek to test dark matter models by measuring dark matter subhaloes at low masses. Despite their predicted lack of stars, these subhaloes may be detectable through gravitational lensing or via their gravitational perturbations on stellar streams. To set measurable expectations for subhalo populations within Lambda cold dark matter, we examine 11 Milky Way (MW)-mass haloes from the FIRE-2 baryonic simulations, quantifying the counts and orbital fluxes for subhaloes with properties relevant to stellar stream interactions: masses down to $10^{6}\, \text{M}_\odot$, distances ≲50 kpc of the galactic centre, across z = 0 − 1 (tlookback = 0–8 Gyr). We provide fits to our results and their dependence on subhalo mass, distance, and lookback time, for use in (semi)analytical models. A typical MW-mass halo contains ≈16 subhaloes $\gt 10^{7}\, \text{M}_\odot$ (≈1 subhalo $\gt 10^{8}\, \text{M}_\odot$) within 50 kpc at z ≈ 0. We compare our results with dark matter-only versions of the same simulations: because they lack a central galaxy potential, they overpredict subhalo counts by 2–10×, more so at smaller distances. Subhalo counts around a given MW-mass galaxy declined over time, being ≈10× higher at z = 1 than at z ≈ 0. Subhaloes have nearly isotropic orbital velocity distributions at z ≈ 0. Across our simulations, we also identified 4 analogues of Large Magellanic Cloud satellite passages; these analogues enhance subhalo counts by 1.4–2.1 times, significantly increasing the expected subhalo population around the MW today. Our results imply an interaction rate of ∼5 per Gyr for a stream like GD-1, sufficient to make subhalo–stream interactions a promising method of measuring dark subhaloes.

     
    more » « less
  3. ABSTRACT

    Slow rotator galaxies are distinct amongst galaxy populations, with simulations suggesting that a mix of minor and major mergers are responsible for their formation. A promising path to resolve outstanding questions on the type of merger responsible, is by investigating deep imaging of massive galaxies for signs of potential merger remnants. We utilize deep imaging from the Subaru-Hyper Suprime Cam Wide data to search for tidal features in massive [log10(M*/M⊙) > 10] early-type galaxies (ETGs) in the SAMI Galaxy Survey. We perform a visual check for tidal features on images where the galaxy has been subtracted using a Multi-Gauss Expansion (MGE) model. We find that 31$^{+2}_{-2}$ per cent of our sample show tidal features. When comparing galaxies with and without features, we find that the distributions in stellar mass, light-weighted mean stellar population age, and H${\alpha}$ equivalent width are significantly different, whereas spin ($\lambda _{R_{\rm {e}}}$), ellipticity, and bulge-to-total ratio have similar distributions. When splitting our sample in age, we find that galaxies below the median age (10.8 Gyr) show a correlation between the presence of shells and lower $\lambda _{R_{\rm {e}}}$, as expected from simulations. We also find these younger galaxies which are classified as having ‘strong’ shells have lower $\lambda _{R_{\rm {e}}}$. However, simulations suggest that merger features become undetectable within ∼2–4 Gyr post-merger. This implies that the relationship between tidal features and merger history disappears for galaxies with older stellar ages, i.e. those that are more likely to have merged long ago.

     
    more » « less
  4. ABSTRACT

    The formation and evolution of local brightest cluster galaxies (BCGs) is investigated by determining the stellar populations and dynamics from the galaxy core, through the outskirts and into the intracluster light (ICL). Integral spectroscopy of 23 BCGs observed out to $4\, r_{e}$ is collected and high signal-to-noise regions are identified. Stellar population synthesis codes are used to determine the age, metallicity, velocity, and velocity dispersion of stars within each region. The ICL spectra are best modelled with populations that are younger and less metal-rich than those of the BCG cores. The average BCG core age of the sample is $\rm 13.3\pm 2.8\, Gyr$ and the average metallicity is $\rm [Fe/H] = 0.30\pm 0.09$, whereas for the ICL the average age is $\rm 9.2\pm 3.5\, Gyr$ and the average metallicity is $\rm [Fe/H] = 0.18\pm 0.16$. The velocity dispersion profile is seen to be rising or flat in most of the sample (17/23), and those with rising values reach the value of the host cluster’s velocity dispersion in several cases. The most extended BCGs are closest to the peak of the cluster’s X-ray luminosity. The results are consistent with the idea that the BCG cores and inner regions formed quickly and long ago, with the outer regions and ICL forming more recently, and continuing to assemble through minor merging. Any recent star formation in the BCGs is a minor component, and is associated with the cluster cool core status.

     
    more » « less
  5. ABSTRACT Surveys of the Milky Way (MW) and M31 enable detailed studies of stellar populations across ages and metallicities, with the goal of reconstructing formation histories across cosmic time. These surveys motivate key questions for galactic archaeology in a cosmological context: When did the main progenitor of an MW/M31-mass galaxy form, and what were the galactic building blocks that formed it? We investigate the formation times and progenitor galaxies of MW/M31-mass galaxies using the Feedback In Realistic Environments-2 cosmological simulations, including six isolated MW/M31-mass galaxies and six galaxies in Local Group (LG)-like pairs at z = 0. We examine main progenitor ‘formation’ based on two metrics: (1) transition from primarily ex-situ to in-situ stellar mass growth and (2) mass dominance compared to other progenitors. We find that the main progenitor of an MW/M31-mass galaxy emerged typically at z ∼ 3–4 ($11.6\!\!-\!\!12.2\, \rm {Gyr}$ ago), while stars in the bulge region (inner 2 kpc) at z = 0 formed primarily in a single main progenitor at z ≲ 5 (${\lesssim} \!12.6\, \rm {Gyr}$ ago). Compared with isolated hosts, the main progenitors of LG-like paired hosts emerged significantly earlier (Δz ∼ 2, $\Delta t\!\sim \!1.6\, \rm {Gyr}$), with ∼4× higher stellar mass at all z ≳ 4 (${\gtrsim} \!12.2\, \rm {Gyr}$ ago). This highlights the importance of environment in MW/M31-mass galaxy formation, especially at early times. On average, about 100 galaxies with $\rm {\it{ M}}_\rm {star}\!\gtrsim \!10^5\, \rm {M}_\odot$ went into building a typical MW/M31-mass system. Thus, surviving satellites represent a highly incomplete census (by ∼5×) of the progenitor population. 
    more » « less