skip to main content


Title: Electrophoresis in dilute polymer solutions
We analyse the electrophoresis of a weakly charged particle with a thin double layer in a dilute polymer solution. The particle velocity in polymer solutions modelled with different constitutive equations is calculated using a regular perturbation in the polymer concentration and the generalized reciprocal theorem. The analysis shows that the polymer is strongly stretched in two regions, the birefringent strand and the high-shear region inside the double layer. The electrophoretic velocity of the particle always decreases with the addition of polymers due to both increased viscosity and fluid elasticity. At a small Weissenberg number ( $Wi$ ), which is the product of the polymer relaxation time and the shear rate, the polymers inside the double layer contribute to most of the velocity reduction by increasing the fluid viscosity. With increasing $Wi$ , viscoelasticity decreases and shear thinning increases the particle velocity. Polymer elasticity alters the fluid velocity disturbance outside the double layer from that of a neutral squirmer to a puller-type squirmer. At high $Wi$ , the strong extensional stress inside the birefringent strand downstream of the particle dominates the velocity reduction. The scaling of the birefringent strand is used to estimate the particle velocity.  more » « less
Award ID(s):
1803156
NSF-PAR ID:
10162406
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Fluid Mechanics
Volume:
884
ISSN:
0022-1120
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Here, we use magnetically driven self-assembled achiral swimmers made of two to four superparamagnetic micro-particles to provide insight into how swimming kinematics develop in complex, shear-thinning fluids. Two model shear-thinning polymer fluids are explored, where measurements of swimming dynamics reveal contrasting propulsion kinematics in shear-thinning fluids vs a Newtonian fluid. When comparing the velocity of achiral swimmers in polymer fluids to their dynamics in water, we observe kinematics dependent on (1) no shear-thinning, (2) shear-thinning with negligible elasticity, and (3) shear-thinning with elasticity. At the step-out frequency, the fluidic environment's viscoelastic properties allow swimmers to propel faster than their Newtonian swimming speed, although their swimming gait remains similar. Micro-particle image velocimetry is also implemented to provide insight into how shear-thinning viscosity fluids with elasticity can modify the flow fields of the self-assembled magnetic swimmers. Our findings reveal that flow asymmetry can be created for symmetric swimmers through either the confinement effect or the Weissenberg effect. For pseudo-chiral swimmers in shear-thinning fluids, only three bead swimmers show swimming enhancement, while four bead swimmers always have a decreased step-out frequency velocity compared to their dynamics in water.

     
    more » « less
  2. The interplay between viscoelasticity and inertia in dilute polymer solutions at high deformation rates can result in inertioelastic instabilities. The nonlinear evolution of these instabilities generates a state of turbulence with significantly different spatiotemporal features compared to Newtonian turbulence, termed elastoinertial turbulence (EIT). We ex- plore EIT by studying the dynamics of a submerged planar jet of a dilute aqueous polymer solution injected into a quiescent tank of water using a combination of schlieren imaging and laser Doppler velocimetry (LDV). We show how fluid elasticity has a nonmonotonic effect on the jet stability depending on its magnitude, creating two distinct regimes in which elastic effects can either destabilize or stabilize the jet. In agreement with linear stability analyses of viscoelastic jets, an inertioelastic shear-layer instability emerges near the edge of the jet for small levels of elasticity, independent of bulk undulations in the fluid column. The growth of this disturbance mode destabilizes the flow, resulting in a turbulence transition at lower Reynolds numbers and closer to the nozzle compared to the conditions required for the transition to turbulence in a Newtonian jet. Increasing the fluid elasticity merges the shear-layer instability into a bulk instability of the jet column. In this regime, elastic tensile stresses generated in the shear layer act as an “elastic membrane” that partially stabilizes the flow, retarding the transition to turbulence to higher levels of inertia and greater distances from the nozzle. In the fully turbulent state far from the nozzle, planar viscoelastic jets exhibit unique spatiotemporal features associated with EIT. The time-averaged angle of jet spreading, an Eulerian measure of the degree of entrainment, and the centerline velocity of the jets both evolve self-similarly with distance from the nozzle. The autocovariance of the schlieren images in the fully turbulent region of the jets shows coherent structures that are elongated in the streamwise direction, consistent with the suppression of streamwise vortices by elastic stresses. These coherent structures give a higher spectral energy to small frequency modes in EIT characterized by LDV measurements of the velocity fluctuations at the jet centerline. Finally, our LDV measurements reveal a frequency spectrum characterized by a −3 power-law exponent, different from the well-known −5/3 power-law exponent characteristic of Newtonian turbulence. 
    more » « less
  3. Abstract

    Polymer solutions are frequently used in enhanced oil recovery and groundwater remediation to improve the recovery of trapped nonaqueous fluids. However, applications are limited by an incomplete understanding of the flow in porous media. The tortuous pore structure imposes both shear and extension, which elongates polymers; moreover, the flow is often at large Weissenberg numbers, Wi, at which polymer elasticity in turn strongly alters the flow. This dynamic elongation can even produce flow instabilities with strong spatial and temporal fluctuations despite the low Reynolds number, Re. Unfortunately, macroscopic approaches are limited in their ability to characterize the pore‐scale flow. Thus, understanding how polymer conformations, flow dynamics, and pore geometry together determine these nontrivial flow patterns and impact macroscopic transport remains an outstanding challenge. This review describes how microfluidic tools can shed light on the physics underlying the flow of polymer solutions in porous media at high Wi and low Re. Specifically, microfluidic studies elucidate how steady and unsteady flow behavior depends on pore geometry and solution properties, and how polymer‐induced effects impact nonaqueous fluid recovery. This work thus provides new insights for polymer dynamics, non‐Newtonian fluid mechanics, and applications such as enhanced oil recovery and groundwater remediation.

     
    more » « less
  4. Ultrasound directed self-assembly (DSA) allows organizing particles dispersed in a fluid medium into user-specified patterns, driven by the acoustic radiation force associated with a standing ultrasound wave. Accurate control of the spatial organization of the particles in the fluid medium requires accounting for medium viscosity and particle volume fraction. However, existing theories consider an inviscid medium or only determine the effect of viscosity on the magnitude of the acoustic radiation force rather than the locations where particles assemble, which is crucial information to use ultrasound DSA as a fabrication method. We experimentally measure the deviation between locations where spherical microparticles assemble during ultrasound DSA as a function of medium viscosity and particle volume fraction. Additionally, we simulate the experiments using coupled-phase theory and the time-averaged acoustic radiation potential, and we derive best-fit equations that predict the deviation between locations where particles assemble during ultrasound DSA when using viscous and inviscid theory. We show that the deviation between locations where particles assemble in viscous and inviscid media first increases and then decreases with increasing particle volume fraction and medium viscosity, which we explain by means of the sound propagation velocity of the mixture. This work has implications for using ultrasound DSA to fabricate, e.g., engineered polymer composite materials that derive their function from accurately organizing a pattern of particles embedded in the polymer matrix.

     
    more » « less
  5. The development of novel drug delivery systems, which are revolutionizing modern medicine, is benefiting from studies on microorganisms’ swimming. In this paper we consider a model microorganism (a squirmer) enclosed in a viscous droplet to investigate the effects of medium heterogeneity or geometry on the propulsion speed of the caged squirmer. We first consider the squirmer and droplet to be spherical (no shape effects) and derive exact solutions for the equations governing the problem. For a squirmer with purely tangential surface velocity, the squirmer is always able to move inside the droplet (even when the latter ceases to move as a result of large fluid resistance of the heterogeneous medium). Adding radial modes to the surface velocity, we establish a new condition for the existence of a co-swimming speed (where squirmer and droplet move at the same speed). Next, to probe the effects of geometry on propulsion, we consider the squirmer and droplet to be in Newtonian fluids. For a squirmer with purely tangential surface velocity, numerical simulations reveal a strong dependence of the squirmer's speed on shapes, the size of the droplet and the viscosity contrast. We found that the squirmer speed is largest when the droplet size and squirmer's eccentricity are small, and the viscosity contrast is large. For co-swimming, our results reveal a complex, non-trivial interplay between the various factors that combine to yield the squirmer's propulsion speed. Taken together, our study provides several considerations for the efficient design of future drug delivery systems. 
    more » « less