skip to main content


Title: The effect of medium viscosity and particle volume fraction on ultrasound directed self-assembly of spherical microparticles

Ultrasound directed self-assembly (DSA) allows organizing particles dispersed in a fluid medium into user-specified patterns, driven by the acoustic radiation force associated with a standing ultrasound wave. Accurate control of the spatial organization of the particles in the fluid medium requires accounting for medium viscosity and particle volume fraction. However, existing theories consider an inviscid medium or only determine the effect of viscosity on the magnitude of the acoustic radiation force rather than the locations where particles assemble, which is crucial information to use ultrasound DSA as a fabrication method. We experimentally measure the deviation between locations where spherical microparticles assemble during ultrasound DSA as a function of medium viscosity and particle volume fraction. Additionally, we simulate the experiments using coupled-phase theory and the time-averaged acoustic radiation potential, and we derive best-fit equations that predict the deviation between locations where particles assemble during ultrasound DSA when using viscous and inviscid theory. We show that the deviation between locations where particles assemble in viscous and inviscid media first increases and then decreases with increasing particle volume fraction and medium viscosity, which we explain by means of the sound propagation velocity of the mixture. This work has implications for using ultrasound DSA to fabricate, e.g., engineered polymer composite materials that derive their function from accurately organizing a pattern of particles embedded in the polymer matrix.

 
more » « less
Award ID(s):
2017588
NSF-PAR ID:
10364566
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
American Institute of Physics
Date Published:
Journal Name:
Journal of Applied Physics
Volume:
131
Issue:
13
ISSN:
0021-8979
Page Range / eLocation ID:
Article No. 134901
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present a numerical study of non-colloidal spherical and rigid particles suspended in Newtonian, shear thinning and shear thickening fluids employing an immersed boundary method. We consider a linear Couette configuration to explore a wide range of solid volume fractions ( $0.1\leqslant \unicode[STIX]{x1D6F7}\leqslant 0.4$ ) and particle Reynolds numbers ( $0.1\leqslant Re_{p}\leqslant 10$ ). We report the distribution of solid and fluid phase velocity and solid volume fraction and show that close to the boundaries inertial effects result in a significant slip velocity between the solid and fluid phase. The local solid volume fraction profiles indicate particle layering close to the walls, which increases with the nominal $\unicode[STIX]{x1D6F7}$ . This feature is associated with the confinement effects. We calculate the probability density function of local strain rates and compare the latter’s mean value with the values estimated from the homogenisation theory of Chateau et al. ( J. Rheol. , vol. 52, 2008, pp. 489–506), indicating a reasonable agreement in the Stokesian regime. Both the mean value and standard deviation of the local strain rates increase primarily with the solid volume fraction and secondarily with the $Re_{p}$ . The wide spectrum of the local shear rate and its dependency on $\unicode[STIX]{x1D6F7}$ and $Re_{p}$ point to the deficiencies of the mean value of the local shear rates in estimating the rheology of these non-colloidal complex suspensions. Finally, we show that in the presence of inertia, the effective viscosity of these non-colloidal suspensions deviates from that of Stokesian suspensions. We discuss how inertia affects the microstructure and provide a scaling argument to give a closure for the suspension shear stress for both Newtonian and power-law suspending fluids. The stress closure is valid for moderate particle Reynolds numbers, $O(Re_{p})\sim 10$ . 
    more » « less
  2. Dense suspensions of particles in viscous liquid often demonstrate the striking phenomenon of abrupt shear thickening, where their viscosity increases strongly with increase of the imposed stress or shear rate. In this work, discrete-particle simulations accounting for short-range hydrodynamic, repulsive, and contact forces are performed to simulate flow of shear thickening bidisperse suspensions, with the packing parameters of large-to-small particle radius ratio δ = 3 and large particle fraction ζ = 0.15, 0.50, and 0.85. The simulations are carried out for volume fractions 0.54 ≤ ϕ ≤ 0.60 and a wide range of shear stresses. The repulsive forces, of magnitude F R , model the effects of surface charge and electric double-layer overlap, and result in shear thinning at small stress, with shear thickening beginning at stresses σ ∼ F R a −2 . A crossover scaling analysis used to describe systems with more than one thermodynamic critical point has recently been shown to successfully describe the experimentally-observed shear thickening behavior in suspensions. The scaling theory is tested here on simulated shear thickening data of the bidisperse mixtures, and also on nearly monodisperse suspensions with δ = 1.4 and ζ = 0.50. Presenting the viscosity in terms of a universal crossover scaling function between the frictionless and frictional maximum packing fractions collapses the viscosity for most of the suspensions studied. Two scaling regimes having different exponents are observed. The scaling analysis shows that the second normal stress difference N 2 and the particle pressure Π also collapse on their respective curves, with the latter featuring a different exponent from the viscosity and normal stress difference. The influence of the fraction of frictional contacts, one of the parameters of the scaling analysis, and its dependence on the packing parameters are also presented. 
    more » « less
  3. null (Ed.)
    Particle mixing process is critical for the design and quality control of concrete and composite production. This paper develops an algorithm to simulate the high-shear mixing process of a granular flow containing a high proportion of solid particles mixed in a liquid. DEM is employed to simulate solid particle interactions; whereas SPH is implemented to simulate the liquid particles. The two-way coupling force between SPH and DEM particles is used to evaluate the solid-liquid interaction of a multi-phase flow. Using Darcy’s Law, this paper evaluates the coupling force as a function of local mixture porosity. After the model is verified by two benchmark case studies, i.e., a solid particle moving in a liquid and fluid flowing through a porous medium, this method is applied to a high shear mixing problem of two types of solid particles mixed in a viscous liquid by a four-bladed mixer. A homogeneity metric is introduced to characterize the mixing quality of the particulate mixture. The virtual experiments with the present algorithm show that adding more liquid or increasing liquid viscosity slows down the mixing process for a high solid load mix. Although the solid particles can be mixed well eventually, the liquid distribution is not homogeneous, especially when the viscosity of liquid is low. The present SPH-DEM model is versatile and suitable for virtual experiments of particle mixing process with different blades, solid particle densities and sizes, and liquid binders, and thus can expedite the design and development of concrete materials and particulate composites. 
    more » « less
  4. Structural anisotropy, often observed in naturally occurring materials such as wood and human tissues, is central to the function in several engineered and non-engineered applications. In this study, we present the theory and proof-of-concept demonstration of an ultrasound-assisted non-contact manufacturing approach to create well-defined spatial patterns of micro-particles within a fluid matrix. A chamber with opposing pair of ultrasonic transducers was designed and prototyped based on standing bulk acoustic wave theory, and it was used to study the effects of ultrasound frequency (1, 1.5, 2, 3 MHz) and voltage amplitude (80, 160 mVpp) on alignment characteristics of polymer micro-particles (mean Ø = 8 μm) suspended in water (0.01 g/ml). The experimental results were consistent with theory in that the micro-particles aligned along linear strands, with the inter-strand spacing reducing with increasing frequency (p < 0.05). Increasing voltage amplitude reduced the time taken to align the particles, but it did not significantly change the observed spacing (p > 0.05). The observed spacing, however, was higher than the theoretical spacing of half-wavelength, for each frequency and amplitude. The alignment of living human adipose derived stem cells in viscous alginate hydrogel matrix was also successfully demonstrated. The approach presented herein can be scaled up into manufacturing processes, including layered manufacturing, to create highly functional mechanically and/or electrically anisotropic composites through controlled spatial geometry, as well as to biofabricate engineered tissues with aligned cells and extracellular matrix components to mimic natural tissues. 
    more » « less
  5. At large scales, particulate suspensions flow like homogeneous viscous liquids, but at the particle scale, the role of the local heterogeneity brought by the particles cannot be neglected. The volume fraction also matters; in dense suspensions, particulate effects can be felt across distances much larger than the particle diameter. Therefore, whether a suspension should behave as a homogeneous or heterogeneous fluid is a matter of scale. Here, we consider the canonical situation of the pinch-off of suspension drops to study the behavior of suspensions at different scales. Initially, the filament of suspension thins down like a homogeneous liquid until reaching a critical thickness at which the thinning accelerates. Eventually, a region devoid of particles appears, and the breakup occurs similarly to a homogeneous viscous liquid. Although this problem have been studied for almost 20 y, the role of heterogeneity in the acceleration of the pinch-off is still not understood. We show that the onset of heterogeneity corresponds to the dislocation of the suspensions where local fluctuations in particle concentration increase. We derive scaling laws for the dynamics in the heterogeneous regime and develop a model to predict the coherence length at which the discrete nature of the particles appears, and we demonstrate that this length depends both on the particle size and on the volume fraction of the suspension. We extend this approach to polydisperse suspensions. Our work sheds light on the mesoscopic scale below which starts the heterogeneous regime and a continuum approach is not valid anymore. 
    more » « less