Abstract Despite a growing sample of precisely measured stellar rotation periods and ages, the strength of magnetic braking and the degree of departure from standard (Skumanich-like) spin-down have remained persistent questions, particularly for stars more evolved than the Sun. Rotation periods can be measured for stars older than the Sun by leveraging asteroseismology, enabling models to be tested against a larger sample of old field stars. Because asteroseismic measurements of rotation do not depend on starspot modulation, they avoid potential biases introduced by the need for a stellar dynamo to drive starspot production. Using a neural network trained on a grid of stellar evolution models and a hierarchical model-fitting approach, we constrain the onset of weakened magnetic braking (WMB). We find that a sample of stars with asteroseismically measured rotation periods and ages is consistent with models that depart from standard spin-down prior to reaching the evolutionary stage of the Sun. We test our approach using neural networks trained on model grids produced by separate stellar evolution codes with differing physical assumptions and find that the choices of grid physics can influence the inferred properties of the braking law. We identify the normalized critical Rossby number Rocrit/Ro⊙= 0.91 ± 0.03 as the threshold for the departure from standard rotational evolution. This suggests that WMB poses challenges to gyrochronology for roughly half of the main-sequence lifetime of Sun-like stars.
more »
« less
Determination of the Starspot Covering Fraction as a function of Stellar Age from Observational Data
Abstract The association of starspots with magnetic fields leads to an expectation that quantities which correlate with magnetic field strength may also correlate with starspot coverage. Since younger stars spin faster and are more magnetically active, assessing whether starspot coverage correlates with shorter rotation periods and stellar youth tests these principles. Here we analyze the starspot covering fraction versus stellar age for M-, G-, K-, and F-type stars based on previously determined variability and rotation periods of over 30,000 Kepler main-sequence stars. We determine the correlation between age and variability using single and dual power law best fits. We find that starspot coverage does indeed decrease with age. Only when the data are binned in an effort to remove the effects of activity cycles of individual stars, do statistically significant power law fits emerge for each stellar type. Using bin averages, we then find that the starspot covering fraction scales with the X-ray to bolometric ratio to the power λ with 0.22 ± 0.03 < λ < 0.32 ± 0.09 for G-type stars of rotation period below 15 days and for the full range of F- and M-type stars. For K-type stars, we find two branches of λ separated by variability bins, with the lower branch showing nearly constant starspot coverage and the upper branch λ ∼ 0.35 ± 0.04. G-type stars with periods longer than 15 days exhibit a transition to steeper power law of λ ∼ 2.4 ± 1.0. The potential connection to previous rotation-age measurements suggesting a magnetic breaking transition at the solar age, corresponding to period of 24.5 is also of interest.
more »
« less
- Award ID(s):
- 1813298
- PAR ID:
- 10163585
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- ISSN:
- 0035-8711
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Sub-subgiant stars (SSGs) fall below the subgiant branch and/or red of the giant branch in open and globular clusters, an area of the color–magnitude diagram (CMD) not populated by standard stellar evolution tracks. One hypothesis is that SSGs result from rapid rotation in subgiants or giants due to tidal synchronization in a close binary. The strong magnetic fields generated inhibit convection, which in turn produces large starspots, radius inflation, and lower-than-expected average surface temperatures and luminosities. Here we cross-reference a catalog of active giant binaries (RS CVns) in the field with Gaia EDR3. Using the Gaia photometry and parallaxes, we precisely position the RS CVns in a CMD. We identify stars that fall below a 14 Gyr, metal-rich isochrone as candidate field SSGs. Out of a sample of 1723 RS CVn, we find 448 SSG candidates, a dramatic expansion from the 65 SSGs previously known. Most SSGs have rotation periods of 2–20 days, with the highest SSG fraction found among RS CVn with the shortest periods. The ubiquity of SSGs among this population indicates that SSGs are a normal phase in evolution for RS CVn-type systems, not rare by-products of dynamical encounters found only in dense star clusters as some have suggested. We present our catalog of 1723 active giants, including Gaia photometry and astrometry, and rotation periods from the Transiting Exoplanet Survey Satellite and International Variable Star Index (VSX). This catalog can serve as an important sample to study the impacts of magnetic fields in evolved stars.more » « less
-
Abstract Stellar spin down is a critical yet poorly understood component of stellar evolution. In particular, results from the Kepler Mission imply that mature age, solar-type stars have inefficient magnetic braking, resulting in a stalled spin-down rate. However, a large number of precise asteroseismic ages are needed for mature (≥3 Gyr) stars in order to probe the regime where traditional and stalled spin-down models differ. In this paper, we present a new asteroseismic benchmark star for gyrochronology discovered using reprocessed Kepler short cadence data. KIC 11029516 (Papayu) is a bright (Kp= 9.6 mag) solar-type star with a well-measured rotation period (21.1 ± 0.8 days) from spot modulation using 4 yr of Kepler long-cadence data. We combine asteroseismology and spectroscopy to obtainTeff= 5888 ± 100 K, [Fe/H] = 0.30 ± 0.06 dex,M= 1.24 ± 0.05M⊙,R= 1.34 ± 0.02R⊙, and age of 4.0 ± 0.4 Gyr, making Papayu one of the most similar stars to the Sun in terms of temperature and radius with an asteroseismic age and a rotation period measured from spot modulation. We find that Papayu sits at the transition of where traditional and weakened spin-down models diverge. A comparison with stars of similar zero-age main-sequence temperatures supports previous findings that weakened spin-down models are required to explain the ages and rotation periods of old solar-type stars.more » « less
-
Abstract The intermediate period gap, discovered by Kepler, is an observed dearth of stellar rotation periods in the temperature–period diagram at ∼20 days for G dwarfs and up to ∼30 days for early-M dwarfs. However, because Kepler mainly targeted solar-like stars, there is a lack of measured periods for M dwarfs, especially those at the fully convective limit. Therefore it is unclear if the intermediate period gap exists for mid- to late-M dwarfs. Here, we present a period catalog containing 40,553 rotation periods (9535 periods >10 days), measured using the Zwicky Transient Facility (ZTF). To measure these periods, we developed a simple pipeline that improves directly on the ZTF archival light curves and reduces the photometric scatter by 26%, on average. This new catalog spans a range of stellar temperatures that connect samples from Kepler with MEarth, a ground-based time-domain survey of bright M dwarfs, and reveals that the intermediate period gap closes at the theoretically predicted location of the fully convective boundary ( G BP − G RP ∼ 2.45 mag). This result supports the hypothesis that the gap is caused by core–envelope interactions. Using gyro-kinematic ages, we also find a potential rapid spin-down of stars across this period gap.more » « less
-
Abstract X-ray observations of low-mass stars in open clusters are critical to understanding the dependence of magnetic activity on stellar properties and their evolution. Praesepe and the Hyades, two of the nearest, most-studied open clusters, are among the best available laboratories for examining the dependence of magnetic activity on rotation for stars with masses ≲1M⊙. We present an updated study of the rotation–X-ray activity relation in the two clusters. We updated membership catalogs that combine pre-Gaia catalogs with new catalogs based on Gaia Data Release 2. The resulting catalogs are the most inclusive ones for both clusters: 1739 Praesepe and 1315 Hyades stars. We collected X-ray detections for cluster members, for which we analyzed, re-analyzed, or collated data from ROSAT, the Chandra X-ray Observatory, the Neil Gehrels Swift Observatory, and XMM-Newton. We have detections for 326 Praesepe and 462 Hyades members, of which 273 and 164, respectively, have rotation periods—an increase of 6× relative to what was previously available. We find that at ≈700 Myr, only M dwarfs remain saturated in X-rays, with only tentative evidence for supersaturation. We also find a tight relation between the Rossby number and fractional X-ray luminosityLX/Lbolin unsaturated single members, suggesting a power-law index between −3.2 and −3.9. Lastly, we find no difference in the coronal parameters between binary and single members. These results provide essential insight into the relative efficiency of magnetic heating of the stars’ atmospheres, thereby informing the development of robust age-rotation-activity relations.more » « less
An official website of the United States government

