skip to main content


Title: Determination of the Starspot Covering Fraction as a function of Stellar Age from Observational Data
Abstract The association of starspots with magnetic fields leads to an expectation that quantities which correlate with magnetic field strength may also correlate with starspot coverage. Since younger stars spin faster and are more magnetically active, assessing whether starspot coverage correlates with shorter rotation periods and stellar youth tests these principles. Here we analyze the starspot covering fraction versus stellar age for M-, G-, K-, and F-type stars based on previously determined variability and rotation periods of over 30,000 Kepler main-sequence stars. We determine the correlation between age and variability using single and dual power law best fits. We find that starspot coverage does indeed decrease with age. Only when the data are binned in an effort to remove the effects of activity cycles of individual stars, do statistically significant power law fits emerge for each stellar type. Using bin averages, we then find that the starspot covering fraction scales with the X-ray to bolometric ratio to the power λ with 0.22 ± 0.03 < λ < 0.32 ± 0.09 for G-type stars of rotation period below 15 days and for the full range of F- and M-type stars. For K-type stars, we find two branches of λ separated by variability bins, with the lower branch showing nearly constant starspot coverage and the upper branch λ ∼ 0.35 ± 0.04. G-type stars with periods longer than 15 days exhibit a transition to steeper power law of λ ∼ 2.4 ± 1.0. The potential connection to previous rotation-age measurements suggesting a magnetic breaking transition at the solar age, corresponding to period of 24.5 is also of interest.  more » « less
Award ID(s):
1813298
NSF-PAR ID:
10163585
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
ISSN:
0035-8711
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Our understanding of the impact of magnetic activity on stellar evolution continues to unfold. This impact is seen in sub-subgiant stars, defined to be stars that sit below the subgiant branch and red of the main sequence in a cluster color–magnitude diagram. Here we focus on S1063, a prototypical sub-subgiant in open cluster M67. We use a novel technique combining a two-temperature spectral decomposition and light-curve analysis to constrain starspot properties over a multiyear time frame. Using a high-resolution near-infrared IGRINS spectrum and photometric data from K2 and ASAS-SN, we find a projected spot filling factor of 32% ± 7% with a spot temperature of 4000 ± 200 K. This value anchors the variability seen in the light curve, indicating the spot filling factor of S1063 ranged from 20% to 45% over a four-year time period with an average spot filling factor of 30%. These values are generally lower than those determined from photometric model comparisons but still indicate that S1063, and likely other sub-subgiants, are magnetically active spotted stars. We find observational and theoretical comparisons of spotted stars are nuanced due to the projected spot coverage impacting estimates of the surface-averaged effective temperature. The starspot properties found here are similar to those found in RS CVn systems, supporting classifying sub-subgiants as another type of active giant star binary system. This technique opens the possibility of characterizing the surface conditions of many more spotted stars than previous methods, allowing for larger future studies to test theoretical models of magnetically active stars.

     
    more » « less
  2. Abstract

    AU Microscopii (AU Mic) is an active 24 ± 3 Myr pre-main-sequence M dwarf in the stellar neighborhood (d= 9.7 pc) with a rotation period of 4.86 days. The two transiting planets orbiting AU Mic, AU Mic b and c, are warm sub-Neptunes on 8.5 and 18.9 day periods and are targets of interest for atmospheric observations of young planets. Here we study AU Mic’s unocculted starspots using ground-based photometry and spectra in order to complement current and future transmission spectroscopy of its planets. We gathered multicolor Las Cumbres Observatory (LCO) 0.4 m SBIG photometry to study the star's rotational modulations and LCO Network of Robotic Echelle Spectrographs high-resolution spectra to measure the different spectral components within the integrated spectrum of the star, parameterized by three spectral components and their coverage fractions. We find AU Mic’s surface has at least two spectral components: aTamb=400314+15K ambient photosphere and cool spots that have a temperature ofTspot=300371+63K, covering a globally averaged area of 39% ± 4% which increases and decreases by 5.1% ± 0.3% from the average throughout a rotation. We also detect a third flux component with a filling factor less than 0.5% and a largely uncertain temperature between 8500 and 10,000 K that we attribute to flare flux not entirely omitted when time averaging the spectra. We include measurements of spot characteristics using a two-temperature model, which we find agree strongly with the three-temperature results. Our expanded use of various techniques to study starspots will help us better understand this system and may have applications for interpreting the transmission spectra for exoplanets transiting stars of a wide range of activity levels.

     
    more » « less
  3. ABSTRACT

    Solar-type stars, which shed angular momentum via magnetized stellar winds, enter the main sequence with a wide range of rotational periods Prot. This initially wide range of rotational periods contracts and has mostly vanished by a stellar age $t\sim {0.6}\, {\rm Gyr}$, after which Solar-type stars spin according to the Skumanich relation $P_\text{rot}\propto \sqrt{t}$. Magnetohydrodynamic stellar wind models can improve our understanding of this convergence of rotation periods. We present wind models of 15 young Solar-type stars aged ∼24 Myr to ∼0.13 Gyr. With our previous wind models of stars aged ∼0.26 and ∼0.6 Gyr we obtain 30 consistent three-dimensional wind models of stars mapped with Zeeman–Doppler imaging – the largest such set to date. The models provide good cover of the pre-Skumanich phase of stellar spin-down in terms of rotation, magnetic field, and age. We find the mass-loss rate $\dot{M}\propto \Phi ^{{0.9\pm 0.1}}$ with a residual spread of ∼150 per cent and the wind angular momentum loss rate $\dot{J}\propto {}P_\text{rot}^{-1} \Phi ^{1.3\pm 0.2}$ with a residual spread of ∼500 per cent where Φ is the unsigned surface magnetic flux. When comparing different magnetic field scalings for each single star we find a gradual reduction in the power-law exponent with increasing magnetic field strength.

     
    more » « less
  4. Aims: We present a detailed long-term study of the single M6 III giant RZ Ari to obtain direct and simultaneous measurements of the magnetic field, activity indicators, and radial velocity in order to infer the origin of its activity. We study its magnetic activity in the context of stellar evolution, and for this purpose, we also refined its evolutionary status and Li abundance. In general, for the M giants, little is known about the properties of the magnetic activity and its causes. RZ Ari possess the strongest surface magnetic field of the known Zeeman-detected M giants and is bright enough to allow a deep study of its surface magnetic structure. The results are expected to shed light on the activity mechanism in these stars.

    Methods: We used the spectropolarimeter Narval at the Télescope Bernard Lyot (Observatoire du Pic du Midi, France) to obtain a series of Stokes I and V profiles for RZ Ari. Using the least-squares deconvolution technique, we were able to detect the Zeeman signature of the magnetic field. We measured its longitudinal component by means of the averaged Stokes I and V profiles. In addition, we also applied Zeeman-Doppler imaging (ZDI) to search for the rotation period of the star, and we constructed a tentative magnetic map. It is the first magnetic map for a star that evolved at the tip of red giant branch (RGB) or even on the asymptotic giant branch (AGB). The spectra also allowed us to monitor chromospheric emission lines, which are well-known indicators of stellar magnetic activity. From the observations obtained between September 2010 and August 2019, we studied the variability of the magnetic field of RZ Ari. We also redetermined the initial mass and evolutionary status of this star based on current stellar evolutionary tracks and on the angular diameter measured from CHARA interferometry. Results: Our results point to an initial mass of 1.5Mso that this giant is more likely an early-AGB star, but a lotaction at the tip of the RGB is not completely excluded. With a v sin i of 6.0 ±0.5 km s−1, the upper limit for the rotation period is found to be 909 days. On the basis of our dataset and AAVSO photometric data, we determined periods longer than 1100 days for the magnetic field and photometric variability, and 704 days for the spectral line activity indicators. The rotation period determined on the basis of the Stokes V profiles variability is 530 days. A similar period of 544 days is also found for the photometric data. When we take this rotation period and the convective turnover time into account, an effective action of an α-ω type dynamo seems to be unlikely, but other types of dynamo could be operating there. The star appears to lie outside the two magnetic strips on the giant branches, where the α-ω-type dynamo is expected to operate effectively, and it also has a much higher lithium content than the evolutionary model predicts. These facts suggest that a planet engulfment could speed up its rotation and trigger dynamo-driven magnetic activity. On the other hand, the period of more than 1100 days cannot be explained by rotational modulation and could be explained by the lifetime of large convective structures. The absence of linear polarization at the time the magnetic field was detected, however, suggests that a local dynamo probably does not contribute significantly to the magnetic field, at least for that time interval. 
    more » « less
  5. ABSTRACT

    We present an extensive catalogue of BY Draconis (BY Dra)-type variables and their stellar parameters. BY Dra are main-sequence FGKM-type stars. They exhibit inhomogeneous starspots and bright faculae in their photospheres. These features are caused by stellar magnetic fields, which are carried along with the stellar disc through rotation and which produce gradual modulations in their light curves (LCs). Our main objective is to characterize the properties of BY Dra variables over a wide range of stellar masses, temperatures, and rotation periods. A recent study categorized 84 697 BY Dra variables from Data Release 2 of the Zwicky Transient Facility based on their LCs. We have collected additional photometric data from multiple surveys and performed broad-band spectral energy distribution fits to estimate stellar parameters. We found that more than half of our sample objects are of K spectral type, covering an extensive range of stellar parameters in the low-mass regime (0.1–1.3 M⊙). Compared with previous studies, most of the sources in our catalogue are rapid rotators, and so most of them must be young stars for which a spin-down has not yet occurred. We subdivided our catalogue based on convection zone depth and found that the photospheric activity index, Sph, is lower for higher effective temperatures, i.e. for thinner convective envelopes. We observe a broad range of photospheric magnetic activity for different spectral classes owing to the presence of stellar populations of different ages. We found a higher magnetically active fraction for K- than M-type stars.

     
    more » « less