skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: VOAs and Rank-Two Instanton SCFTs
We analyze the N = 2 superconformal field theories that arise when a pair of D3-branes probe an F-theory singularity from the perspective of the associated vertex operator algebra. We identify these vertex operator algebras for all cases; we find that they have a completely uniform description, parameterized by the dual Coxeter number of the corresponding global symmetry group. We further present free field realizations for these algebras in the style of recent work by three of the authors. These realizations transparently reflect the algebraic structure of the Higgs branches of these theories. We find fourth-order linear modular differential equations for the vacuum characters/Schur indices of these theories, which are again uniform across the full family of theories and parameterized by the dual Coxeter number.We comment briefly on expectations for the still higher-rank cases.  more » « less
Award ID(s):
1915093
PAR ID:
10164110
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Communications in Mathematical Physics
ISSN:
0010-3616
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A<sc>bstract</sc> In this paper, we construct the associated vertex operator algebras for all$$ \mathcal{N} $$ N = 2 superconformal field theories of rank one. We give a uniform presentation through free-field realizations, which turns out to be a particularly suitable framework for this task. The elementary building blocks of the construction are dictated by the low energy degrees of freedom on the Higgs branch, which are well understood for rank-one theories. We further analyze the interplay between Higgs and Coulomb data on the moduli space of vacua, which tightly constrain the overall structure of the free field realizations. Our results suggest a plausible bottom-up classification scheme for low-rank SCFTs incorporating vertex algebra techniques. 
    more » « less
  2. A bstract We investigate the admissible vector-valued modular forms having three independent characters and vanishing Wronskian index and determine which ones correspond to genuine 2d conformal field theories. This is done by finding bilinear coset-type relations that pair them into meromorphic characters with central charges 8, 16, 24, 32 and 40. Such pairings allow us to identify some characters with definite CFTs and rule out others. As a key result we classify all unitary three-character CFT with vanishing Wronskian index, excluding c = 8, 16. The complete list has two infinite affine series B r ,1 , D r ,1 and 45 additional theories. As a by-product, at higher values of the total central charge we also find constraints on the existence or otherwise of meromorphic theories. We separately list several cases that potentially correspond to Intermediate Vertex Operator Algebras. 
    more » « less
  3. Using the Zhu algebra for a certain category of C-graded vertex algebras V, we prove that if V is finitely Ω-generated and satisfies suitable grading conditions, then V is rational, i.e., it has semi-simple representation theory, with a one-dimensional level zero Zhu algebra. Here, Ω denotes the vectors in V that are annihilated by lowering the real part of the grading. We apply our result to the family of rank one Weyl vertex algebras with conformal element ωμ parameterized by μ∈C and prove that for certain non-integer values of μ, these vertex algebras, which are non-integer graded, are rational, with a one-dimensional level zero Zhu algebra. In addition, we generalize this result to appropriate C-graded Weyl vertex algebras of arbitrary ranks. 
    more » « less
  4. Free fermion vertex superalgebras are discussed from the point of view of Urod vertex algebras [T. Arakawa, T. Creutzig and B. Feigin, Urod algebras and translation of [Formula: see text]-algebras, Forum Mathematics Sigma, Vol. 10 (Cambridge University Press, 2022) and M. Bershtein, B. Feigin and A. Litvinov, Coupling of two conformal field theories and Nakajima–Yoshioka blow-up equations, preprint (2013), arXiv:1310.7281]. We present all finite decompositions of the [Formula: see text]-fermion vertex algebra via Virasoro and [Formula: see text] superconformal vertex algebras. We also present decompositions of higher rank fermion algebras using affine [Formula: see text]-algebras, and a conjecture on the existence of the “square root” of the [Formula: see text] fermion algebra. 
    more » « less
  5. Here we introduce a series of associative algebras attached to a vertex operator algebra V of CFT type, called mode transition algebras, and show they reflect both algebraic properties of V and geometric constructions on moduli of curves. Pointed and coordinatized curves, labeled by admissible V-modules, give rise to sheaves of coinvariants. We show that if the mode transition algebras admit multiplicative identities satisfying certain natural properties (called strong identity elements), these sheaves deform as wanted on families of curves with nodes. This provides new contexts in which coherent sheaves of coinvariants form vector bundles. We also show that mode transition algebras carry information about higher level Zhu algebras and generalized Verma modules. To illustrate, we explicitly describe the higher level Zhu algebras of the Heisenberg vertex operator algebra, proving a conjecture of Addabbo–Barron. 
    more » « less