skip to main content


Title: Meromorphic cosets and the classification of three-character CFT
A bstract We investigate the admissible vector-valued modular forms having three independent characters and vanishing Wronskian index and determine which ones correspond to genuine 2d conformal field theories. This is done by finding bilinear coset-type relations that pair them into meromorphic characters with central charges 8, 16, 24, 32 and 40. Such pairings allow us to identify some characters with definite CFTs and rule out others. As a key result we classify all unitary three-character CFT with vanishing Wronskian index, excluding c = 8, 16. The complete list has two infinite affine series B r ,1 , D r ,1 and 45 additional theories. As a by-product, at higher values of the total central charge we also find constraints on the existence or otherwise of meromorphic theories. We separately list several cases that potentially correspond to Intermediate Vertex Operator Algebras.  more » « less
Award ID(s):
2207584
NSF-PAR ID:
10411144
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of High Energy Physics
Volume:
2023
Issue:
3
ISSN:
1029-8479
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Taxonomic treatments start with the creation of taxon-by-character matrices. Systematics authors recognized data ambiguity issues in published phenotypic characters and are willing to adopt an ontology-aware authoring tool (Cui et al. 2022). To promote interoperable and reusable taxonomic treatments, we have developed two research prototypes: a web-based application, Character Recorder (http://chrecorder.lusites.xyz/login), to faciliate the use and addition of ontology terms by Carex systematist authors while building their matrices, and a mobile application, Conflict Resolver (Android, https://tinyurl.com/5cfatrz8), to identify potential conflicts among the terms added by the authors and facilitate the resolution of the conflicts. We have completed two usability studies on Character Recorder. a web-based application, Character Recorder (http://chrecorder.lusites.xyz/login), to faciliate the use and addition of ontology terms by Carex systematist authors while building their matrices, and a mobile application, Conflict Resolver (Android, https://tinyurl.com/5cfatrz8), to identify potential conflicts among the terms added by the authors and facilitate the resolution of the conflicts. We have completed two usability studies on Character Recorder. In the one-hour Student Usabiilty Study, 16 third-year biology students with a general introduction to Carex used Character Recorder and Excel to record a set of 11 given characters for two samples (shape of sheath summits = U-shaped/U shaped). In the three-day Expert Usability Study, 7 established Carex systematists and 1 graduate student with expert-level knowledge used Character Recorder to record characters for 1 sample each of Carex canesens and Carex rostrata as they would in their professional life, using real mounted specimens, microscope, reticles, and rulers. Experts activities were not timed but they spent roughly 1.5 days on recording the characters and the rest of time discussing features and improvements. Features of Character Recorder have been reported in 2021 TDWG meeting and we included here only a few figures to highlight its interoperability and reusability features at the time of the usability studies (Fig. 1, Fig. 2, and Fig. 3). The Carex Ontology accompanying Character Recorder was created by extracting terms from Carex treatments of Flora of China and Flora of North America using Explorer of Taxon Concept (Cui et al. 2016) with subsequent manual edits. The design principle of Character Recorder is to encourage standardization and also leave the authors the freedom to do their work. While it took students an average of 6 minutes to recover all the given characters using Microsoft® Excel®, as opposed to 11 minutes using Character Recorder, the total number of unique meaning-bearing words used in their characters was 116 with Excel versus 30 with Character Recorder, showing the power of the latter in reducing synonyms and spelling variations. All students reported that they learned to use Character Recorder quickly and some even thought their use was as fast or faster than using Excel. All preferred Character Recorder to Excel for teaching students to record character data. Nearly all of the students found Character Recorder was more useful for recording clear and consistent data and all students agreed that participating in this study raised their awareness of data variation issues. The expert group consisted of 3, 2, 1, 3 experts in age ranges 20-49, 50-59, 60-69, and >69, respectively. They each recorded over 100 characters for two or more samples. Detailed analysis of their characters is pending, but we have noticed color characters have more variations than other characters (Fig. 4). All experts reported that they learned to use Character Recorder quickly, and 6 out of 8 believed they would not need a tutorial the next time they used it. One out of 8 experts somewhat disliked the feature of reusing others' values ("Use This" in Fig. 2) as it may undermine the objectivity and independence of an author. All experts used Recommended Set of Characters and they liked the term suggestion and illustration features shown in Figs 2, 3. All experts would recommend that their colleagues try Character Recorder and recommended that it be further developed and integrated into every taxonomist's toolbox. Student and expert responses to the National Aeronautics and Space Administration Task Load Index (NASA-TLX, Hart and Staveland 1988) are summarized in Fig. 5, which suggests that, while Character Recorder may incur in a slightly higher cost, the performance it supports outweighs its cost, especially for students. Every piece of the software prototypes and associated resources are open for anyone to access or further develop. We thank all student and expert participants and US National Science Foundation for their support in this research. We thank Harris & Harris and Presses de l'Université Laval for the permissions to use their phenotype illustrations in Character Recorder. 
    more » « less
  2. We present Atacama Large Millimeter/submillimeter Array (ALMA) sub-kiloparsec- to kiloparsec-scale resolution observations of the [C II], CO (9–8), and OH+(11–01) lines along with their dust continuum emission toward the far-infrared (FIR) luminous quasar SDSS J231038.88+185519.7 atz = 6.0031, to study the interstellar medium distribution, the gas kinematics, and the quasar-host system dynamics. We decompose the intensity maps of the [C II] and CO (9–8) lines and the dust continuum with two-dimensional elliptical Sérsic models. The [C II] brightness follows a flat distribution with a Sérsic index of 0.59. The CO (9–8) line and the dust continuum can be fit with an unresolved nuclear component and an extended Sérsic component with a Sérsic index of ∼1, which may correspond to the emission from an active galactic nucleus dusty molecular torus and a quasar host galaxy, respectively. The different [C II] spatial distribution may be due to the effect of the high dust opacity, which increases the FIR background radiation on the [C II] line, especially in the galaxy center, significantly suppressing the [C II] emission profile. The dust temperature drops with distance from the center. The effective radius of the dust continuum is smaller than that of the line emission and the dust mass surface density, but is consistent with that of the star formation rate surface density. This may indicate that the dust emission is a less robust tracer of the dust and gas distribution but is a decent tracer of the obscured star formation activity. The OH+(11–01) line shows a P-Cygni profile with an absorption at ∼–400 km s−1, which may indicate an outflow with a neutral gas mass of (6.2 ± 1.2)×108Malong the line of sight. We employed a three-dimensional tilted ring model to fit the [C II] and CO (9–8) data cubes. The two lines are both rotation dominated and trace identical disk geometries and gas motions. This suggest that the [C II] and CO (9–8) gas are coplanar and corotating in this quasar host galaxy. The consistent circular velocities measured with [C II] and CO (9–8) lines indicate that these two lines trace a similar gravitational potential. We decompose the circular rotation curve measured from the kinematic model fit to the [C II] line into four matter components (black hole, stars, gas, and dark matter). The quasar-starburst system is dominated by baryonic matter inside the central few kiloparsecs. We constrain the black hole mass to be 2.97+0.51-0.77 × 109M; this is the first time that the dynamical mass of a black hole has been measured atz ∼ 6. This mass is consistent with that determined using the scaling relations from quasar emission lines. A massive stellar component (on the order of 109M) may have already existed when the Universe was only ∼0.93 Gyr old. The relations between the black hole mass and the baryonic mass of this quasar indicate that the central supermassive black hole may have formed before its host galaxy.

     
    more » « less
  3. Introduction and Theoretical Frameworks Our study draws upon several theoretical foundations to investigate and explain the educational experiences of Black students majoring in ME, CpE, and EE: intersectionality, critical race theory, and community cultural wealth theory. Intersectionality explains how gender operates together with race, not independently, to produce multiple, overlapping forms of discrimination and social inequality (Crenshaw, 1989; Collins, 2013). Critical race theory recognizes the unique experiences of marginalized groups and strives to identify the micro- and macro-institutional sources of discrimination and prejudice (Delgado & Stefancic, 2001). Community cultural wealth integrates an asset-based perspective to our analysis of engineering education to assist in the identification of factors that contribute to the success of engineering students (Yosso, 2005). These three theoretical frameworks are buttressed by our use of Racial Identity Theory, which expands understanding about the significance and meaning associated with students’ sense of group membership. Sellers and colleagues (1997) introduced the Multidimensional Model of Racial Identity (MMRI), in which they indicated that racial identity refers to the “significance and meaning that African Americans place on race in defining themselves” (p. 19). The development of this model was based on the reality that individuals vary greatly in the extent to which they attach meaning to being a member of the Black racial group. Sellers et al. (1997) posited that there are four components of racial identity: 1. Racial salience: “the extent to which one’s race is a relevant part of one’s self-concept at a particular moment or in a particular situation” (p. 24). 2. Racial centrality: “the extent to which a person normatively defines himself or herself with regard to race” (p. 25). 3. Racial regard: “a person’s affective or evaluative judgment of his or her race in terms of positive-negative valence” (p. 26). This element consists of public regard and private regard. 4. Racial ideology: “composed of the individual’s beliefs, opinions and attitudes with respect to the way he or she feels that the members of the race should act” (p. 27). The resulting 56-item inventory, the Multidimensional Inventory of Black Identity (MIBI), provides a robust measure of Black identity that can be used across multiple contexts. Research Questions Our 3-year, mixed-method study of Black students in computer (CpE), electrical (EE) and mechanical engineering (ME) aims to identify institutional policies and practices that contribute to the retention and attrition of Black students in electrical, computer, and mechanical engineering. Our four study institutions include historically Black institutions as well as predominantly white institutions, all of which are in the top 15 nationally in the number of Black engineering graduates. We are using a transformative mixed-methods design to answer the following overarching research questions: 1. Why do Black men and women choose and persist in, or leave, EE, CpE, and ME? 2. What are the academic trajectories of Black men and women in EE, CpE, and ME? 3. In what way do these pathways vary by gender or institution? 4. What institutional policies and practices promote greater retention of Black engineering students? Methods This study of Black students in CpE, EE, and ME reports initial results from in-depth interviews at one HBCU and one PWI. We asked students about a variety of topics, including their sense of belonging on campus and in the major, experiences with discrimination, the impact of race on their experiences, and experiences with microaggressions. For this paper, we draw on two methodological approaches that allowed us to move beyond a traditional, linear approach to in-depth interviews, allowing for more diverse experiences and narratives to emerge. First, we used an identity circle to gain a better understanding of the relative importance to the participants of racial identity, as compared to other identities. The identity circle is a series of three concentric circles, surrounding an “inner core” representing one’s “core self.” Participants were asked to place various identities from a provided list that included demographic, family-related, and school-related identities on the identity circle to reflect the relative importance of the different identities to participants’ current engineering education experiences. Second, participants were asked to complete an 8-item survey which measured the “centrality” of racial identity as defined by Sellers et al. (1997). Following Enders’ (2018) reflection on the MMRI and Nigrescence Theory, we chose to use the measure of racial centrality as it is generally more stable across situations and best “describes the place race holds in the hierarchy of identities an individual possesses and answers the question ‘How important is race to me in my life?’” (p. 518). Participants completed the MIBI items at the end of the interview to allow us to learn more about the participants’ identification with their racial group, to avoid biasing their responses to the Identity Circle, and to avoid potentially creating a stereotype threat at the beginning of the interview. This paper focuses on the results of the MIBI survey and the identity circles to investigate whether these measures were correlated. Recognizing that Blackness (race) is not monolithic, we were interested in knowing the extent to which the participants considered their Black identity as central to their engineering education experiences. Combined with discussion about the identity circles, this approach allowed us to learn more about how other elements of identity may shape the participants’ educational experiences and outcomes and revealed possible differences in how participants may enact various points of their identity. Findings For this paper, we focus on the results for five HBCU students and 27 PWI students who completed the MIBI and identity circle. The overall MIBI average for HBCU students was 43 (out of a possible 56) and the overall MIBI scores ranged from 36-51; the overall MIBI average for the PWI students was 40; the overall MIBI scores for the PWI students ranged from 24-51. Twenty-one students placed race in the inner circle, indicating that race was central to their identity. Five placed race on the second, middle circle; three placed race on the third, outer circle. Three students did not place race on their identity circle. For our cross-case qualitative analysis, we will choose cases across the two institutions that represent low, medium and high MIBI scores and different ranges of centrality of race to identity, as expressed in the identity circles. Our final analysis will include descriptive quotes from these in-depth interviews to further elucidate the significance of race to the participants’ identities and engineering education experiences. The results will provide context for our larger study of a total of 60 Black students in engineering at our four study institutions. Theoretically, our study represents a new application of Racial Identity Theory and will provide a unique opportunity to apply the theories of intersectionality, critical race theory, and community cultural wealth theory. Methodologically, our findings provide insights into the utility of combining our two qualitative research tools, the MIBI centrality scale and the identity circle, to better understand the influence of race on the education experiences of Black students in engineering. 
    more » « less
  4. Abstract—This work describes and compares the skull and lower jaw of two species of Rhynchotherium discovered in early Blancan deposits in central Mexico. This comparison establishes the differences between the species Rhynchotherium falconeri and R. browni and is the first record of R. browni outside of San José de Pimas, Sonora. The description of the skull and jaw of the same individual, referred to the gomphotheriid proboscidean Rhynchotherium falconeri, collected in deposits of early Blancan age (3.6 Ma), from the Rancho La Goleta locality, state of Michoacán, Mexico, corresponds to an adult individual that shows these diagnostic characters: deflection of the symphysis down and forward with an angle of 61°, the anterior edge of the ascending ramus at 90°, and the ventral inclination of the horizontal ramus at 25°, which gives it greater depth characteristics in the anterior region under the protolophid of m2. These are characters that support referral to Rhynchotherium falconeri, however, M3/m3 are simple tetraloph/tetralophid, with low cusps and simple trefoils, without accessory cusps or a heel. The anteroposterior length of M3 is among the smallest of Rhynchotherium falconeri known in faunas of North America. These measurements are within the range considered part of sexual dimorphism, so the specimen is assumed to correspond to a female. The skull is domed, the occipital almost straight in relation to the occlusal surface of the molars, the face is more elongate, and the premaxillae are narrow and open, so they are separated in the anterior medial part, the alveoli are complete with apparent divergent direction, and two long fragments of tusks are separated from the alveoli with small evidence of enamel. In the San Miguel de Allende basin, in deposits of early Blancan age (3 Ma) in the Los Galvanes area, the first known record of Rhynchotherium browni was collected outside of San José de Pimas, Sonora. The jaw is larger, and the structures are more robust. The symphysis, although reconstructed, shows a probable inclination of ~77°, and the anterior edge of the ascending rami has an angle of 107°. The mandible presents the alveoli of m1’s, and in front of them an extension of the lingual canal of approximately 70 mm. The horizontal ramus is longer and straighter, and shallower but wider transversely at the base of the ascending rami compared to Rhynchotherium falconeri. The M2 has three lophs, and the metaloph has a remarkable double trefoil. In m2 the tritolophid has a small cusp with signs of wear in the posterior medial part. The M3/m3 are tetraloph with simple trefoils and higher cusps, and have a heel represented by small cusps. The right i2 is complete, with no evidence of enamel. 
    more » « less
  5. Embedding properties of network realizations of dissipative reduced order models Jörn Zimmerling, Mikhail Zaslavsky,Rob Remis, Shasri Moskow, Alexander Mamonov, Murthy Guddati, Vladimir Druskin, and Liliana Borcea Mathematical Sciences Department, Worcester Polytechnic Institute https://www.wpi.edu/people/vdruskin Abstract Realizations of reduced order models of passive SISO or MIMO LTI problems can be transformed to tridiagonal and block-tridiagonal forms, respectively, via dierent modications of the Lanczos algorithm. Generally, such realizations can be interpreted as ladder resistor-capacitor-inductor (RCL) networks. They gave rise to network syntheses in the rst half of the 20th century that was at the base of modern electronics design and consecutively to MOR that tremendously impacted many areas of engineering (electrical, mechanical, aerospace, etc.) by enabling ecient compression of the underlining dynamical systems. In his seminal 1950s works Krein realized that in addition to their compressing properties, network realizations can be used to embed the data back into the state space of the underlying continuum problems. In more recent works of the authors Krein's ideas gave rise to so-called nite-dierence Gaussian quadrature rules (FDGQR), allowing to approximately map the ROM state-space representation to its full order continuum counterpart on a judicially chosen grid. Thus, the state variables can be accessed directly from the transfer function without solving the full problem and even explicit knowledge of the PDE coecients in the interior, i.e., the FDGQR directly learns" the problem from its transfer function. This embedding property found applications in PDE solvers, inverse problems and unsupervised machine learning. Here we show a generalization of this approach to dissipative PDE problems, e.g., electromagnetic and acoustic wave propagation in lossy dispersive media. Potential applications include solution of inverse scattering problems in dispersive media, such as seismic exploration, radars and sonars. To x the idea, we consider a passive irreducible SISO ROM fn(s) = Xn j=1 yi s + σj , (62) assuming that all complex terms in (62) come in conjugate pairs. We will seek ladder realization of (62) as rjuj + vj − vj−1 = −shˆjuj , uj+1 − uj + ˆrj vj = −shj vj , (63) for j = 0, . . . , n with boundary conditions un+1 = 0, v1 = −1, and 4n real parameters hi, hˆi, ri and rˆi, i = 1, . . . , n, that can be considered, respectively, as the equivalent discrete inductances, capacitors and also primary and dual conductors. Alternatively, they can be viewed as respectively masses, spring stiness, primary and dual dampers of a mechanical string. Reordering variables would bring (63) into tridiagonal form, so from the spectral measure given by (62 ) the coecients of (63) can be obtained via a non-symmetric Lanczos algorithm written in J-symmetric form and fn(s) can be equivalently computed as fn(s) = u1. The cases considered in the original FDGQR correspond to either (i) real y, θ or (ii) real y and imaginary θ. Both cases are covered by the Stieltjes theorem, that yields in case (i) real positive h, hˆ and trivial r, rˆ, and in case (ii) real positive h,r and trivial hˆ,rˆ. This result allowed us a simple interpretation of (62) as the staggered nite-dierence approximation of the underlying PDE problem [2]. For PDEs in more than one variables (including topologically rich data-manifolds), a nite-dierence interpretation is obtained via a MIMO extensions in block form, e.g., [4, 3]. The main diculty of extending this approach to general passive problems is that the Stieltjes theory is no longer applicable. Moreover, the tridiagonal realization of a passive ROM transfer function (62) via the ladder network (63) cannot always be obtained in port-Hamiltonian form, i.e., the equivalent primary and dual conductors may change sign [1]. 100 Embedding of the Stieltjes problems, e.g., the case (i) was done by mapping h and hˆ into values of acoustic (or electromagnetic) impedance at grid cells, that required a special coordinate stretching (known as travel time coordinate transform) for continuous problems. Likewise, to circumvent possible non-positivity of conductors for the non-Stieltjes case, we introduce an additional complex s-dependent coordinate stretching, vanishing as s → ∞ [1]. This stretching applied in the discrete setting induces a diagonal factorization, removes oscillating coecients, and leads to an accurate embedding for moderate variations of the coecients of the continuum problems, i.e., it maps discrete coecients onto the values of their continuum counterparts. Not only does this embedding yields an approximate linear algebraic algorithm for the solution of the inverse problems for dissipative PDEs, it also leads to new insight into the properties of their ROM realizations. We will also discuss another approach to embedding, based on Krein-Nudelman theory [5], that results in special data-driven adaptive grids. References [1] Borcea, Liliana and Druskin, Vladimir and Zimmerling, Jörn, A reduced order model approach to inverse scattering in lossy layered media, Journal of Scientic Computing, V. 89, N1, pp. 136,2021 [2] Druskin, Vladimir and Knizhnerman, Leonid, Gaussian spectral rules for the three-point second dierences: I. A two-point positive denite problem in a semi-innite domain, SIAM Journal on Numerical Analysis, V. 37, N 2, pp.403422, 1999 [3] Druskin, Vladimir and Mamonov, Alexander V and Zaslavsky, Mikhail, Distance preserving model order reduction of graph-Laplacians and cluster analysis, Druskin, Vladimir and Mamonov, Alexander V and Zaslavsky, Mikhail, Journal of Scientic Computing, V. 90, N 1, pp 130, 2022 [4] Druskin, Vladimir and Moskow, Shari and Zaslavsky, Mikhail LippmannSchwingerLanczos algorithm for inverse scattering problems, Inverse Problems, V. 37, N. 7, 2021, [5] Mark Adolfovich Nudelman The Krein String and Characteristic Functions of Maximal Dissipative Operators, Journal of Mathematical Sciences, 2004, V 124, pp 49184934 Go back to Plenary Speakers Go back to Speakers Go back 
    more » « less