skip to main content


Title: Lithium-ion electrolytic substrates for sub-1V high-performance transition metal dichalcogenide transistors and amplifiers
Abstract

Electrostatic gating of two-dimensional (2D) materials with ionic liquids (ILs), leading to the accumulation of high surface charge carrier densities, has been often exploited in 2D devices. However, the intrinsic liquid nature of ILs, their sensitivity to humidity, and the stress induced in frozen liquids inhibit ILs from constituting an ideal platform for electrostatic gating. Here we report a lithium-ion solid electrolyte substrate, demonstrating its application in high-performance back-gated n-type MoS2and p-type WSe2transistors with sub-threshold values approaching the ideal limit of 60 mV/dec and complementary inverter amplifier gain of 34, the highest among comparable amplifiers. Remarkably, these outstanding values were obtained under 1 V power supply. Microscopic studies of the transistor channel using microwave impedance microscopy reveal a homogeneous channel formation, indicative of a smooth interface between the TMD and underlying electrolytic substrate. These results establish lithium-ion substrates as a promising alternative to ILs for advanced thin-film devices.

 
more » « less
Award ID(s):
1720595
NSF-PAR ID:
10164398
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
11
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Electric-double-layer (EDL) gated transistors use ions in an electrolyte to induce charge in the channel of the transistor by field-effect. Because a sub-nanometer gap capacitor is created at the electrolyte/channel interface, large capacitance densities (∼µF cm−2) corresponding to high sheet carrier densities (1014cm−2) can be induced, exceeding conventional gate dielectrics by about one order of magnitude. Because it is an interfacial technique, EDL gating is especially effective on two-dimensional (2D) crystals, which—at the monolayer limit—are basically interfaces themselves. Both solid polymer electrolytes and ionic liquids are routinely used as ion-conducting gate dielectrics, and they have provided access to regimes of transport in 2D materials that would be inaccessible otherwise. The technique, now widely used, has enabled the 2D crystal community to study superconductivity, spin- and valleytronics, investigate electrical and structural phase transitions, and create abruptp-njunctions to generate tunneling, among others. In addition to using EDL gating as a tool to investigate properties of the 2D crystals, more recent efforts have emerged to engineer the electrolyte to add new functionality and device features, such as synaptic plasticity, bistability and non-volatility. Example of potential applications include neuromorphic computing and non-volatile memory. This review focuses on using ions forelectrostaticcontrol of 2D crystal transistors both to uncover basic properties of 2D crystals, and also to add new device functionalities.

     
    more » « less
  2. Abstract

    The residue of common photo‐ and electron‐beam resists, such as poly(methyl methacrylate) (PMMA), is often present on the surface of 2D crystals after device fabrication. The residue degrades device properties by decreasing carrier mobility and creating unwanted doping. Here, MoS2and WSe2field effect transistors (FETs) with residue are cleaned by contact mode atomic force microscopy (AFM) and the impact of the residue on: 1) the intrinsic electrical properties, and 2) the effectiveness of electric double layer (EDL) gating are measured. After cleaning, AFM measurements confirm that the surface roughness decreases to its intrinsic state (i.e., ≈0.23 nm for exfoliated MoS2and WSe2) and Raman spectroscopy shows that the characteristic peak intensities (E2gand A1g) increase. PMMA residue causes p‐type doping corresponding to a charge density of ≈7 × 1011cm−2on back‐gated MoS2and WSe2FETs. For FETs gated with polyethylene oxide (PEO)76:CsClO4, removing the residue increases the charge density by 4.5 × 1012cm−2, and the maximum drain current by 247% (statistically significant,p< 0.05). Removing the residue likely allows the ions to be positioned closer to the channel surface, which is essential for achieving the best possible electrostatic gate control in ion‐gated devices.

     
    more » « less
  3. Abstract

    Ionic liquids (ILs) are proposed as potentially ideal electrolytes for use in electrical double layer capacitors. However, recent discoveries of long‐range electrostatic screening in ILs have revealed that this understanding of the electrical double layer in highly concentrated solutions is still incomplete. Through precise time‐dependent measurements of wide‐angle X‐ray scattering and surface forces, novel molecular insight into their electrical double layer is provided. An ultraslow evolution of the nanostructure of three imidazolium ILs is observed, which reflects the reorganization of the ions in confined and unconfined (bulk) states. The observed phase transformation in the bulk consists of the ILs ordering over at least 20 h, reflected in an expansion or contraction of the spacing between the ions organized in domains of ≈10 nm. This transformation justifies the evolution of the electrical double layer measured in force measurements. Subtle differences between the ILs arise from the intricate balance between electrostatic and non‐electrostatic interactions. This work reveals a new time scale of the evolution of the IL structure and offers a new perspective for understanding the electrical double layer in ILs, with implications on diverse areas of inquiry, such as energy storage, lubrication, as well as micro‐ and nanoelectronics devices.

     
    more » « less
  4. null (Ed.)
    The successful synthesis of two-dimensional (2D) boron sheets typically relies on the utilization of a silver surface, which acts as a gated substrate compensating for the electron-deficiency of boron. However, how the structures of one-dimensional (1D) boron are affected by the gating effect remains unclear. By means of an unbiased global minimum structure search and density functional theory (DFT) computations, we discovered the coexistence of 2D boron sheets and 1D ribbons triggered by electrostatic gating. Specifically, at a low excess charge density level (<0.1 e per atom), 2D boron sheets dominate the low energy configurations. As the charge density increases (>0.3 e per atom), more 1D boron ribbons emerge, while the number of 2D layers is reduced. Additionally, a number of low-lying 1D boron ribbons were discovered, among which a flat borophene-like ribbon (FBR) was predicted to be stable and possess high mechanical strength. Moreover, the electride Ca 2 N was identified as an ideal substrate for the fabrication of the FBR because of its ability to supply a strong electrostatic field. This work bridges the gap between 2D and 1D boron structures, reveals the polymorphism of 1D boron ribbons under the electrostatic gating effect, and in general provides broad implications for future synthesis and applications of low-dimensional boron materials. 
    more » « less
  5. High‐energy‐density storage devices play a major role in modern electronics from traditional lithium‐ion batteries to supercapacitors for a variety of applications from rechargeable devices to advanced military equipment. Despite the mass adoption of polymer capacitors, their application is limited by their low energy densities and low‐temperature tolerance. Polymer nanocomposites based on 2D nanomaterials have superior capacitive energy densities, higher thermal stabilities, and higher mechanical strength as compared to the pristine polymers and nanocomposites based on 0D or 1D nanomaterials, thus making them ideal for high‐energy‐density dielectric energy storage applications. Here, the recent advances in 2D‐nanomaterial‐based nanocomposites and their implications for energy storage applications are reviewed. Nanocomposites based on conducting 2D nanofillers such as graphene, reduced graphene oxide, MXenes, semiconducting 2D nanofillers including transition metal dichalcogenides such as MoS2, dielectric 2D nanofillers including hBN, Mica, Al2O3, TiO2, Ca2Nb3O10and MMT, and their effects on permittivity, dielectric strength, capacitive energy density, efficiency, thermal stability, and the mechanical strength, are discussed. Also, the theory and machine‐learning‐guided design of polymer 2D nanomaterial composites is learnt and the challenges and opportunities for developing ultrahigh‐capacitive‐energy‐density devices based on these nanofiller polymer composites are presented.

     
    more » « less