skip to main content


Title: Resonance energy transfer and quantum entanglement mediated by epsilon-near-zero and other plasmonic waveguide systems
The resonance energy transfer and entanglement between two-level quantum emitters are typically limited to sub-wavelength distances due to the inherently short-range nature of the dipole–dipole interactions. Moreover, the entanglement of quantum systems is hard to preserve for a long time period due to decoherence and dephasing mainly caused by radiative and nonradiative losses. In this work, we outperform the aforementioned limitations by presenting efficient long-range inter-emitter entanglement and large enhancement of resonance energy transfer between two optical qubits mediated by epsilon-near-zero (ENZ) and other plasmonic waveguide types, such as V-shaped grooves and cylindrical nanorods. More importantly, we explicitly demonstrate that the ENZ waveguide resonant energy transfer and entanglement performance drastically outperforms the other waveguide systems. Only the excited ENZ mode has an infinite phase velocity combined with a strong and homogeneous electric field distribution, which leads to a giant energy transfer and efficient entanglement independent of the emitters’ separation distances and nanoscale positions in the ENZ nanowaveguide, an advantageous feature that can potentially accommodate multi-qubit entanglement. Moreover, the transient entanglement can be further improved and become almost independent of the detrimental decoherence effect when an optically active (gain) medium is embedded inside the ENZ waveguide. We also present that efficient steady-state entanglement can be achieved by using a coherent external pumping scheme. Finally, we report a practical way to detect the steady-state entanglement by computing the second-order correlation function. The presented findings stress the importance of plasmonic ENZ waveguides in the design of the envisioned on-chip quantum communication and information processing plasmonic nanodevices.  more » « less
Award ID(s):
1709612
NSF-PAR ID:
10164616
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Nanoscale
Volume:
11
Issue:
31
ISSN:
2040-3364
Page Range / eLocation ID:
14635 to 14647
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The cooperative phenomena stemming from the radiation field-mediated coupling between individual quantum emitters are presently attracting broad interest for applications related to on-chip photonic quantum memories and long-range entanglement. Common to these applications is the generation of electro-magnetic modes over macroscopic distances. Much research, however, is still needed before such systems can be deployed in the form of practical devices, starting with the investigation of alternate physical platforms. Quantum emitters in two-dimensional (2D) systems provide an intriguing route because these materials can be adapted to arbitrarily shaped substrates to form hybrid systems wherein emitters are near-field-coupled to suitable optical modes. Here, we report a scalable coupling method allowing color center ensembles in a van der Waals material (hexagonal boron nitride) to couple to a delocalized high-quality plasmonic surface lattice resonance. This type of architecture is promising for photonic applications, especially given the ability of the hexagonal boron nitride emitters to operate as single-photon sources at room temperature. 
    more » « less
  2. Dipole-dipole interactions ( V dd ) between closely spaced atoms and molecules are related to real photon and virtual photon exchange between them and decrease in the near field connected with the characteristic Coulombic dipole field law. The control and modification of this marked scaling with distance have become a long-standing theme in quantum engineering since dipole-dipole interactions govern Van der Waals forces, collective Lamb shifts, atom blockade effects, and Förster resonance energy transfer. We show that metamaterials can fundamentally modify these interactions despite large physical separation between interacting quantum emitters. We demonstrate a two orders of magnitude increase in the near-field resonant dipole-dipole interactions at intermediate field distances (10 times the near field) and observe the distance scaling law consistent with a super-Coulombic interaction theory curtailed only by absorption and finite size effects of the metamaterial constituents. We develop a first-principles numerical approach of many-body dipole-dipole interactions in metamaterials to confirm our theoretical predictions and experimental observations. In marked distinction to existing approaches of engineering radiative interactions, our work paves the way for controlling long-range dipole-dipole interactions using hyperbolic metamaterials and natural hyperbolic two-dimensional materials. 
    more » « less
  3. null (Ed.)
    Abstract We develop the analytic theory describing the formation and evolution of entangled quantum states for a fermionic quantum emitter coupled simultaneously to a quantized electromagnetic field in a nanocavity and quantized phonon or mechanical vibrational modes. The theory is applicable to a broad range of cavity quantum optomechanics problems and emerging research on plasmonic nanocavities coupled to single molecules and other quantum emitters. The optimal conditions for a tripartite entanglement are realized near the parametric resonances in a coupled system. The model includes dissipation and decoherence effects due to coupling of the fermion, photon, and phonon subsystems to their dissipative reservoirs within the stochastic evolution approach, which is derived from the Heisenberg–Langevin formalism. Our theory provides analytic expressions for the time evolution of the quantum state and observables and the emission spectra. The limit of a classical acoustic pumping and the interplay between parametric and standard one-photon resonances are analyzed. 
    more » « less
  4. Confining light by plasmonic waveguides is promising for miniaturizing optical components, while topological photonics has been explored for robust light localization. Here we propose combining the two approaches into a simple periodically perforated plasmonic waveguide (PPW) design exhibiting robust localization of long-range surface plasmon polaritons. We predict the existence of a topological edge state originating from a quantized topological invariant, and numerically demonstrate the viability of its excitation at telecommunication wavelength using near-field and waveguide-based approaches. Strong modification of the radiative lifetime of dipole emitters by the edge state, and its robustness to disorder, are demonstrated.

     
    more » « less
  5. We study a quantum entanglement distribution switch serving a set of users in a star topology with equal-length links. The quantum switch, much like a quantum repeater, can perform entanglement swapping to extend entanglement across longer distances. Additionally, the switch is equipped with entanglement switching logic, enabling it to implement switching policies to better serve the needs of the network. In this work, the function of the switch is to create bipartite or tripartite entangled states among users at the highest possible rates at a fixed ratio. Using Markov chains, we model a set of randomized switching policies. Discovering that some are better than others, we present analytical results for the case where the switch stores one qubit per user, and find that the best policies outperform a time division multiplexing policy for sharing the switch between bipartite and tripartite state generation. This performance improvement decreases as the number of users grows. The model is easily augmented to study the capacity region in the presence of quantum state decoherence and associated cut-off times for qubit storage, obtaining similar results. Moreover, decoherence-associated quantum storage cut-off times appear to have little effect on capacity in our identical-link system. We also study a smaller class of policies when the switch stores two qubits per user. 
    more » « less