skip to main content


Title: Near-infrared optical transitions in PdSe 2 phototransistors
We investigate electronic and optoelectronic properties of few-layer palladium diselenide (PdSe 2 ) phototransistors through spatially-resolved photocurrent measurements. A strong photocurrent resonance peak is observed at 1060 nm (1.17 eV), likely attributed to indirect optical transitions in few-layer PdSe 2 . More interestingly, when the thickness of PdSe 2 flakes increases, more and more photocurrent resonance peaks appear in the near-infrared region, suggesting strong interlayer interactions in few-layer PdSe 2 help open up more optical transitions between the conduction and valence bands of PdSe 2 . Moreover, gate-dependent measurements indicate that remarkable photocurrent responses at the junctions between PdSe 2 and metal electrodes primarily result from the photovoltaic effect when a PdSe 2 phototransistor is in the off-state and are partially attributed to the photothermoelectric effect when the device turns on. We also demonstrate PdSe 2 devices with a Seebeck coefficient as high as 74 μV K −1 at room temperature, which is comparable with recent theoretical predications. Additionally, we find that the rise and decay time constants of PdSe 2 phototransistors are ∼156 μs and ∼163 μs, respectively, which are more than three orders of magnitude faster than previous PdSe 2 work and two orders of magnitude over other noble metal dichalcogenide phototransistors, offering new avenues for engineering future optoelectronics.  more » « less
Award ID(s):
1805924 1810088
NSF-PAR ID:
10164861
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Nanoscale
Volume:
11
Issue:
30
ISSN:
2040-3364
Page Range / eLocation ID:
14410 to 14416
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Group IVB transition metal dichalcogenides (TMDCs) have attracted significant attention due to their predicted high charge carrier mobility, large sheet current density, and enhanced thermoelectric power. Here, we investigate the electrical and optoelectronic properties of few-layer titanium diselenide (TiSe 2 )-metal junctions through spatial-, wavelength-, temperature-, power- and temporal-dependent scanning photocurrent measurements. Strong photocurrent responses have been detected at TiSe 2 -metal junctions, which is likely attributed to both photovoltaic and photothermoelectric effects. A fast response time of 31 μs has been achieved, which is two orders of magnitude better than HfSe 2 based devices. More importantly, our experimental results reveal a significant enhancement in the response speed upon cooling to the charge-density-wave (CDW) phase transition temperature ( T CDW = 206 K), which may result from dramatic reduction in carrier scattering that occurs as a result of the switching between the normal and CDW phases of TiSe 2 . Additionally, the photoresponsivity at 145 K is up to an order of magnitude higher than that obtained at room temperature. These fundamental studies not only offer insight for the photocurrent generation mechanisms of group IVB TMDC materials, but also provide a route to engineering future temperature-dependent, two-dimensional, fast electronic and optoelectronic devices. 
    more » « less
  2. Abstract

    The optical momentum alignment effect is demonstrated in WSe2phototransistors . When the photon energy is above the A exciton energy, the maximum photocurrent response occurs for the light polarization direction parallel to the metal electrode edge, suggesting that electrons in the valence band of WSe2prefer to absorb photons with the polarization direction perpendicular to their momentum direction. Further studies indicate that the anisotropic distribution of photo‐excited carriers is likely due to the pseudospin‐induced optical transition selection rules. If the photon energy is below the A exciton energy, the photocurrent signals are maximized when the incident light is polarized in the direction perpendicular to the electrode edge, which is mainly attributed to the polarized absorption of the plasmonic gold electrodes. Moreover, the photocurrent peak can be controlled by an electric field via the quantum confined Stark effect. This resonance peak can also be shifted by adjusting environmental temperatures due to the temperature‐dependent nature of the WSe2band gap. These experimental studies shed light on the knowledge of photocurrent generation mechanisms, opening the door for engineering future anisotropic optoelectronics.

     
    more » « less
  3. null (Ed.)
    Among the layered two dimensional semiconductors, molybdenum disulfide (MoS 2 ) is considered to be an excellent candidate for applications in optoelectronics and integrated circuits due to its layer-dependent tunable bandgap in the visible region, high ON/OFF current ratio in field-effect transistors (FET) and strong light–matter interaction properties. In this study, using multi-terminal measurements, we report high broadband photocurrent response ( R ) and external quantum efficiency (EQE) of few-atomic layered MoS 2 phototransistors fabricated on a SiO 2 dielectric substrate and encapsulated with a thin transparent polymer film of Cytop. The photocurrent response was measured using a white light source as well as a monochromatic light of wavelength λ = 400 nm–900 nm. We measured responsivity using a 2-terminal configuration as high as R = 1 × 10 3 A W −1 under white light illumination with an optical power P opt = 0.02 nW. The R value increased to 3.5 × 10 3 A W −1 when measured using a 4-terminal configuration. Using monochromatic light on the same device, the measured values of R were 10 3 and 6 × 10 3 A W −1 under illumination of λ = 400 nm when measured using 2- and 4-terminal methods, respectively. The highest EQE values obtained using λ = 400 nm were 10 5 % and 10 6 % measured using 2- and 4-terminal configurations, respectively. The wavelength dependent responsivity decreased from 400 nm to the near-IR region at 900 nm. The observed photoresponse, photocurrent–dark current ratio (PDCR), detectivity as a function of applied gate voltage, optical power, contact resistances and wavelength were measured and are discussed in detail. The observed responsivity is also thoroughly studied as a function of contact resistance of the device. 
    more » « less
  4. Over the two decades, amorphous oxide semiconductors (AOSs) and their thin film transistor (TFT) channel application have been intensely explored to realize high performance, transparent and flexible displays due to their high field effect mobility (μFE=5-20 cm2/Vs), visible range optical transparency, and low temperature processability (25-300 °C).[1-2] The metastable amorphous phase is to be maintained during operation by the addition of Zn and additional third cation species (e.g., Ga, Hf, or Al) as an amorphous phase stabilizer.[3-5] To limit TFT off-state currents, a thin channel layer (10-20 nm) was employed for InZnO (IZO)-based TFTs, or third cations were added to suppress carrier generations in the TFT channel. To resolve bias stress-induced instabilities in TFT performance, approaches to employ defect passivation layers or enhance channel/dielectric interfacial compatibility were demonstrated.[6-7] Metallization contact is also a dominating factor that determines the performance of TFTs. Particularly, it has been reported that high electrical contact resistance significantly sacrifices drain bias applied to the channel, which leads to undesirable power loss during TFT operation and issues for the measurement of TFT field effect mobilities. [2, 8] However, only a few reports that suggest strategies to enhance contact behaviors are available in the literature. Furthermore, the previous approaches (1) require an additional fabrication complexity due to the use of additional treatments at relatively harsh conditions such as UV, plasma, or high temperatures, and (2) may lead to adverse effects on the channel material attributed to the chemical incompatibility between dissimilar materials, and exposures to harsh environments. Therefore, a simple and easy but effective buffer strategy, which does not require any additional process complexities and not sacrifice chemical compatibility, needs to be established to mitigate the contact issues and therefore achieve high performance and low power consumption AOS TFTs. The present study aims to demonstrate an approach utilizing an interfacial buffer layer, which is compositionally homogeneous to the channel to better align work functions between channel and metallization without a significant fabrication complexity and harsh treatment conditions. Photoelectron spectroscopic measurements reveal that the conducting IZO buffer, of which the work function (Φ) is 4.37 eV, relaxes a relatively large Φ difference between channel IZO (Φ=4.81 eV) and Ti (Φ=4.2-4.3 eV) metallization. The buffer is found to lower the energy barrier for charge carriers at the source to reach the effective channel region near the dielectric. In addition, the higher carrier density of the buffer and favorable chemical compatibility with the channel (compositionally the same) further contribute to a significant reduction in specific contact resistance as much as more than 2.5 orders of magnitude. The improved contact and carrier supply performance from the source to the channel lead to an enhanced field effect mobility of up to 56.49 cm2/Vs and a threshold voltage of 1.18 V, compared to 13.41 cm2/Vs and 7.44 V of IZO TFTs without a buffer. The present work is unique in that an approach to lower the potential barrier between the source and the effective channel region (located near the channel/dielectric interface, behaving similar to a buried-channel MOSFET [9]) by introducing a contact buffer layer that enhances the field effect mobility and facilitates carrier supply from the source to the effective channel region. 
    more » « less
  5. Abstract

    The emergence of spin‐orbit torques as a promising approach to energy‐efficient magnetic switching has generated large interest in material systems with easily and fully tunable spin‐orbit torques. Here, current‐induced spin‐orbit torques in VO2/NiFe heterostructures are investigated using spin‐torque ferromagnetic resonance, where the VO2layer undergoes a prominent insulator‐metal transition. A roughly twofold increase in the Gilbert damping parameter, α, with temperature is attributed to the change in the VO2/NiFe interface spin absorption across the VO2phase transition. More remarkably, a large modulation (±100%) and a sign change of the current‐induced spin‐orbit torque across the VO2phase transition suggest two competing spin‐orbit torque generating mechanisms. The bulk spin Hall effect in metallic VO2, corroborated by the first‐principles calculation of the spin Hall conductivity , is verified as the main source of the spin‐orbit torque in the metallic phase. The self‐induced/anomalous torque in NiFe, with opposite sign and a similar magnitude to the bulk spin Hall effect in metallic VO2, can be the other competing mechanism that dominates as temperature decreases. For applications, the strong tunability of the torque strength and direction opens a new route to tailor spin‐orbit torques of materials that undergo phase transitions for new device functionalities.

     
    more » « less