skip to main content


This content will become publicly available on August 21, 2024

Title: Theory of entangled two-photon emission/absorption [E2P-EA] between molecules
This paper presents a comprehensive study of the theory of entangled two-photon emission/absorption (E2P-EA) between a many-level cascade donor and a many-level acceptor (which could be quantum dots or molecules) using second-order perturbation theory and where the donor–acceptor pair is in a homogeneous but dispersive medium. To understand the mechanism of E2P-EA, we analyze how dipole orientation, radiative lifetime, energy detuning between intermediate states, separation distance, and entanglement time impact the E2P-EA rate. Our study shows that there are quantum interference effects in the E2P-EA rate expression that lead to oscillations in the rate as a function of entanglement time. Furthermore, we find that the E2P-EA rate for a representative system consisting of two quantum dots can be comparable to one-photon emission/absorption (OP-EA) when donor and acceptor are within a few nm. However, the E2P-EA rate falls off much more quickly with separation distance than does OP-EA.  more » « less
Award ID(s):
2055565
NSF-PAR ID:
10459005
Author(s) / Creator(s):
;
Date Published:
Journal Name:
The Journal of Chemical Physics
Volume:
159
Issue:
7
ISSN:
0021-9606
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Photoinduced nonequilibrium processes in nanoscale materials play key roles in photovoltaic and photocatalytic applications. This review summarizes recent theoretical investigations of excited state dynamics in metal halide perovskites (MHPs), carried out using a state-of-the-art methodology combining nonadiabatic molecular dynamics with real-time time-dependent density functional theory. The simulations allow one to study evolution of charge carriers at the ab initio level and in the time-domain, in direct connection with time-resolved spectroscopy experiments. Eliminating the need for the common approximations, such as harmonic phonons, a choice of the reaction coordinate, weak electron–phonon coupling, a particular kinetic mechanism, and perturbative calculation of rate constants, we model full-dimensional quantum dynamics of electrons coupled to semiclassical vibrations. We study realistic aspects of material composition and structure and their influence on various nonequilibrium processes, including nonradiative trapping and relaxation of charge carriers, hot carrier cooling and luminescence, Auger-type charge–charge scattering, multiple excitons generation and recombination, charge and energy transfer between donor and acceptor materials, and charge recombination inside individual materials and across donor/acceptor interfaces. These phenomena are illustrated with representative materials and interfaces. Focus is placed on response to external perturbations, formation of point defects and their passivation, mixed stoichiometries, dopants, grain boundaries, and interfaces of MHPs with charge transport layers, and quantum confinement. In addition to bulk materials, perovskite quantum dots and 2D perovskites with different layer and spacer cation structures, edge passivation, and dielectric screening are discussed. The atomistic insights into excited state dynamics under realistic conditions provide the fundamental understanding needed for design of advanced solar energy and optoelectronic devices. 
    more » « less
  2. null (Ed.)
    Donor–π-acceptor (D–π-A) fluorophores consisting of a donor unit, a π linker, and an acceptor moiety have attracted attention in the last decade. In this study, we report the synthesis, characterization, optical properties, TD-DFT, and cytotoxicity studies of 17 near infrared (NIR) D–π-A analogs which have not been reported so far to the best of our knowledge. These fluorophores have chloroacrylic acid as the acceptor unit and various donor units such as indole, benzothiazole, benzo[ e ]indole, and quinoline. The fluorophores showed strong absorption in the NIR (700–970 nm) region due to their enhanced intramolecular charge transfer (ICT) between chloroacrylic acid and the donor moieties connected with the Vilsmeier–Haack linker. The emission wavelength maxima of the fluorophores were in between 798 and 870 nm. Compound 20 with a 4-quinoline donor moiety showed an emission wavelength above 1000 nm in the NIR II window. The synthesized fluorophores were characterized by 1 H NMR and 13 C NMR, and their optical properties were studied. Time dependent density functional theory (TD-DFT) calculations showed that the charge transfer occurs from the donor groups (indole, benzothiazole, benzo[ e ]indole, and quinoline) to the acceptor chloroacrylic acid moiety. Fluorophores with [HOMO] to [LUMO+1] transitions were shown to possess a charge separation character. The cytotoxicity of selected fluorophores, 4 , 7 , 10 and 12 was investigated against breast cancer cell lines and they showed better activity than the anti-cancer agent docetaxel. 
    more » « less
  3. Abstract

    Light‐induced charge separation is at the very heart of many solar harvesting technologies. The reduction of energetic barriers to charge separation and transfer increases the rate of separation and the overall efficiency of these technologies. Here we report that the internal reorganization energy of the redox acceptor, the movement of the atoms with changing charge, has a profound effect on the charge transfer rates from donor quantum dots. We experimentally studied and modelled with Marcus Theory charge transfer to cobalt complexes that have similar redox potentials covering 350 mV, but vastly different reorganization energies spanning 2 eV. While the driving force does influence the electron transfer rates, the reorganization energies had a far more profound effect, increasing charge transfer rates by several orders of magnitude. Our studies suggest that careful design of redox mediators to minimize reorganization energy is an untapped route to drastically increase the efficiency of quantum dot applications that feature charge transfer.

     
    more » « less
  4. Abstract

    Light‐induced charge separation is at the very heart of many solar harvesting technologies. The reduction of energetic barriers to charge separation and transfer increases the rate of separation and the overall efficiency of these technologies. Here we report that the internal reorganization energy of the redox acceptor, the movement of the atoms with changing charge, has a profound effect on the charge transfer rates from donor quantum dots. We experimentally studied and modelled with Marcus Theory charge transfer to cobalt complexes that have similar redox potentials covering 350 mV, but vastly different reorganization energies spanning 2 eV. While the driving force does influence the electron transfer rates, the reorganization energies had a far more profound effect, increasing charge transfer rates by several orders of magnitude. Our studies suggest that careful design of redox mediators to minimize reorganization energy is an untapped route to drastically increase the efficiency of quantum dot applications that feature charge transfer.

     
    more » « less
  5. Dipole-dipole interactions ( V dd ) between closely spaced atoms and molecules are related to real photon and virtual photon exchange between them and decrease in the near field connected with the characteristic Coulombic dipole field law. The control and modification of this marked scaling with distance have become a long-standing theme in quantum engineering since dipole-dipole interactions govern Van der Waals forces, collective Lamb shifts, atom blockade effects, and Förster resonance energy transfer. We show that metamaterials can fundamentally modify these interactions despite large physical separation between interacting quantum emitters. We demonstrate a two orders of magnitude increase in the near-field resonant dipole-dipole interactions at intermediate field distances (10 times the near field) and observe the distance scaling law consistent with a super-Coulombic interaction theory curtailed only by absorption and finite size effects of the metamaterial constituents. We develop a first-principles numerical approach of many-body dipole-dipole interactions in metamaterials to confirm our theoretical predictions and experimental observations. In marked distinction to existing approaches of engineering radiative interactions, our work paves the way for controlling long-range dipole-dipole interactions using hyperbolic metamaterials and natural hyperbolic two-dimensional materials. 
    more » « less