skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Defect Manipulation to Control ZnO Micro-/Nanowire-Metal Contacts
Surface states that induce depletion regions are commonly believed to control the transport of charged carriers through semiconductor nanowires. However, direct, localized optical, and electrical measurements of ZnO nanowires show that native point defects inside the nanowire bulk and created at metal−semiconductor interfaces are electrically active and play a dominant role electronically, altering the semiconductor doping, the carrier density along the wire length, and the injection of charge into the wire. We used depth-resolved cathodoluminescence spectroscopy to measure the densities of multiple point defects inside ZnO nanowires, substitutional Cu on Zn sites, zinc vacancy, and oxygen vacancy defects, showing that their densities varied strongly both radially and lengthwise for tapered wires. These defect profiles and their variation with wire diameter produce trap-assisted tunneling and acceptor trapping of free carriers, the balance of which determines the low contact resistivity (2.6 × 10−3 Ω·cm−2) ohmic, Schottky (Φ ≥ 0.35 eV) or blocking nature of Pt contacts to a single nano/microwire. We show how these defects can now be manipulated by ion beam methods and nanowire design, opening new avenues to control nanowire charge injection and transport.  more » « less
Award ID(s):
1800130
PAR ID:
10165321
Author(s) / Creator(s):
Date Published:
Journal Name:
Nano letters
Volume:
18
ISSN:
1530-6984
Page Range / eLocation ID:
6974-6980
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This review presents recent research advances in measuring native point defects in ZnO nanostructures, establishing how these defects a ect nanoscale electronic properties, and developing new techniques to manipulate these defects to control nano- and micro- wire electronic properties.From spatially-resolved cathodoluminescence spectroscopy, we now know that electrically-active native point defects are present inside, as well as at the surfaces of, ZnO and other semiconductor nanostructures. These defects within nanowires and at their metal interfaces can dominate electrical contact properties, yet they are sensitive to manipulation by chemical interactions, energy beams, as well as applied electrical fields. Non-uniform defect distributions are common among semiconductors, and their e ects are magnified in semiconductor nanostructures so that their electronic e ects are significant. The ability to measure native point defects directly on a nanoscale and manipulate their spatial distributions by multiple techniques presents exciting possibilities for future ZnO nanoscale electronics. 
    more » « less
  2. Core–shell Ge/GeSn nanowires provide a route to dislocation-free single crystal germanium-tin alloys with desirable light emission properties because the Ge core acts as an elastically compliant substrate during misfitting GeSn shell growth. However, the uniformity of tin incorporation during reduced pressure chemical vapor deposition may be limited by the kinetics of mass transfer to the shell during GeSn growth. The balance between Sn precursor flux and available surfaces for GeSn nucleation and growth determines whether defects are formed and their type. On the one hand, when the Sn precursor delivery is insufficient, local variations in Sn arrival rate at the nanowire surfaces during GeSn growth produce asymmetries in shell growth that induce wire bending. This inhomogeneous elastic dilatation due to the varying composition occurs via deposition of Sn-poor regions on some of the {112} sidewall facets of the nanowires. On the other hand, when the available nanowire surface area is insufficient to accommodate the arriving Sn precursor flux, Sn-rich precipitate formation results. Between these two extremes, there exists a regime of growth conditions and nanowire densities that permits defect-free GeSn shell growth. 
    more » « less
  3. Laser-induced chemical deposition is an economical “grow-in-place” approach to produce functional materials. The lack of precise control over the component density and other properties hinders the development of the method towards an efficient nanomanufacturing technology. In this paper, we provide a mechanism of direct pulsed-laser integration of ZnO nanowire seeding and growth on silicon wafers toward controlled density. Investigation of laser-induced ZnO nucleation directly deposited on a substrate suggested that the coverage percentage of nucleus particles was a function of instantly available area, supplementing the classical nucleation theory for confined area deposition. A processing window was found in which ZnO nanowires only grew from the early deposited nucleated particles as seeds. A study on ZnO nanowire growth showed that the process became transport limited over time, which was important for density-controlled nanowire growth integrated on nucleated seeds. The proposed mechanism provided guidance to integrate nanomaterials using laser-induced chemical deposition with a controlled density and morphology. 
    more » « less
  4. Doped semiconductor nanowires are emerging as next-generation electronic colloidal materials, and the efficient manipulation of such nanostructures is crucial for technological applications. In fluid suspension, pn nanowires (pn NWs), unlike homogeneous nanowires, have a permanent dipole, and thus, experience a torque under an external DC field that orients the nanowire with its n-type end in the direction of the field. Here, we quantitatively measure the permanent dipoles of various Si nanowire pn diodes and investigate their origin. By comparing the dipoles of pn NWs of different lengths and radii, we show that the permanent dipole originates from non-uniform surface-charge distributions, rather than the internal charges at the p–n junction as was previously proposed. This understanding of the mechanism for pn NWs orientation has relevance to the manipulation, assembly, characterization, and separation of nanowire electronics by electric fields. 
    more » « less
  5. Abstract The highly intricate structures of biological systems make the precise probing of biological behaviors at the cellular‐level particularly difficult. As an advanced toolset capable of exploring diverse biointerfaces, high‐aspect‐ratio nanowires stand out with their unique mechanical, optical, and electrical properties. Specifically, semiconductor nanowires show much promise in their tunability and feasibility for synthesis and fabrication. Thus far, semiconductor nanowires have shown favorable results in deciphering biological communications and translating this cellular language through the nanowire‐based biointerfaces. In this perspective, the synthesis and fabrication methods for different kinds of nanowires and nanowire‐based structures are first surveyed. Next, several cellular‐level nanowire‐enabled applications in biophysical dynamics probing, physiological or biochemical sensing, and biological activity modulation are highlighted. Then, the progress of functionalized nanowires in drug delivery and bioenergy production is reviewed. Finally, the current limitations of nanowires and an outlook into the next generation of nanowire‐based devices at the biointerfaces are concluded. 
    more » « less