We present a performance analysis of compact monolithic optomechanical inertial sensors that describes their key fundamental limits and overall acceleration noise floor. Performance simulations for low-frequency gravity-sensitive inertial sensors show attainable acceleration noise floors on the order of . Furthermore, from our performance models, we devised an optimization approach for our sensor designs, sensitivity, and bandwidth trade space. We conducted characterization measurements of these compact mechanical resonators, demonstrating -products at levels of 250 kg, which highlight their exquisite acceleration sensitivity.
more »
« less
Quantum hybrid optomechanical inertial sensing
We discuss the design of quantum hybrid inertial sensor that combines an optomechanical inertial sensor with the retroreflector of a cold atom interferometer. This sensor fusion approach provides absolute and high-accuracy measurements with cold atom interferometers, while utilizing the optomechanical inertial sensor at frequencies above the repetition rate of the atom interferometer. This improves the overall measurement bandwidth as well as the robustness and field deployment capabilities of these systems. We evaluate which parameters yield an optimal acceleration sensitivity, from which we anticipate a noise floor at nano- levels from DC to 1 kHz.
more »
« less
- Award ID(s):
- 1912106
- PAR ID:
- 10165374
- Publisher / Repository:
- Optical Society of America
- Date Published:
- Journal Name:
- Applied Optics
- Volume:
- 59
- Issue:
- 22
- ISSN:
- 1559-128X; APOPAI
- Format(s):
- Medium: X Size: Article No. G160
- Size(s):
- Article No. G160
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Squeezed light has long been used to enhance the precision of a single optomechanical sensor. An emerging set of proposals seeks to use arrays of optomechanical sensors to detect weak distributed forces, for applications ranging from gravity-based subterranean imaging to dark matter searches; however, a detailed investigation into the quantum-enhancement of this approach remains outstanding. Here, we propose an array of entanglement-enhanced optomechanical sensors to improve the broadband sensitivity of distributed force sensing. By coherently operating the optomechanical sensor array and distributing squeezing to entangle the optical fields, the array of sensors has a scaling advantage over independent sensors (i.e.,$$\sqrt{M}\to M$$ , whereMis the number of sensors) due to coherence as well as joint noise suppression due to multi-partite entanglement. As an illustration, we consider entanglement-enhancement of an optomechanical accelerometer array to search for dark matter, and elucidate the challenge of realizing a quantum advantage in this context.more » « less
-
In this Letter, a high-accuracy, two-dimensional displacement sensor is proposed, designed, and demonstrated based on the concept of an extrinsic Fabry–Perot Interferometer. The sensor is composed of two bundled single-mode optic fibers in parallel and two plasmonic metasurface resonators inscribed on a gold substrate via a focused ion beam. The fiber end surface and the metasurface are in parallel with a small cavity between. The cavity change or -component displacement is determined from the pattern of interference fringes. The -component displacement, perpendicular to the component, is identified from wavelength-selective metasurface resonators, which possess unique resonant wavelengths due to different nanostructure designs. The sensor was calibrated with six displacements applied through a three-axis precision linear stage. Test results indicated that the proposed interferometer can measure displacements with a maximum error of 5.4 µm or 2.2%.more » « less
-
Traveling-wave optomechanical interactions, known as Brillouin interactions, have now been established as a powerful and versatile resource for photonic sources, sensors, and radio-frequency processors. However, established Brillouin-based interactions with sufficient interaction strengths involve short phonon lifetimes, which critically limit their performance for applications, including radio-frequency filtering and optomechanical storage devices. Here, we investigate a new paradigm of optomechanical interactions with tightly confined fundamental acoustic modes, which enables the unique and desirable combination of high optomechanical coupling, long phonon lifetimes, tunable phonon frequencies, and single-sideband amplification. Using sensitive four-wave mixing spectroscopy controlling for noise and spatial mode coupling, optomechanical interactions with long phonon lifetimes and strong coupling are observed in a tapered fiber. In addition, we demonstrate novel phonon self-interference effects resulting from the unique combination of an axially varying device geometry with long phonon lifetimes. A generalized theoretical model, in excellent agreement with experiments, is developed with broad applicability to inhomogeneous optomechanical systems.more » « less
-
We present a continuous, narrow-linewidth, tunable laser system that outputs up to 14.0 W at 770 nm. The light is generated by frequency doubling 18.8 W of light from a 1540 nm fiber amplifier that is seeded by a single-mode diode laser achieving conversion efficiency. We utilize a lithium triborate crystal in an enhancement ring cavity. The low intensity noise and narrow linewidth of the 770 nm output are suitable for cold atom experiments.more » « less
An official website of the United States government
