skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Programmable assembly of gold nanoparticle nanoclusters and lattices
Deterministic assembly of metallic nanoparticles ( e.g. gold nanoparticles) into prescribed configurations has promising applications in many fields such as biosensing and drug delivery. DNA-directed bottom-up assembly has demonstrated unparalleled capability to precisely organize metallic nanoparticles into assemblies of designer configurations. However, the fabrication of assemblies comprising delicate nanoparticle arrangements, especially across large dimensions ( e.g. micron size), has remained challenging. In this report, we have designed DNA origami hexagon tiles that are capable of assembling into higher-order networks of honeycomb arrays or tubes with dimensions up to several microns. The versatile addressability of the unit tile enables precise and periodic positioning of nanoparticles onto these higher-order DNA origami frame structures. Overall, we have constructed a series of 9 gold nanoparticle architectures with programmable configurations ranging from nanometer-sized clusters to micrometer-sized lattices. We believe these architectures shall hold great application potential in numerous biomedical fields.  more » « less
Award ID(s):
1807568
PAR ID:
10165634
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Journal of Materials Chemistry B
ISSN:
2050-750X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Structural DNA nanotechnology has enabled the design and construction of complex nanoscale structures with precise geometry and programmable dynamic and mechanical properties. Recent efforts have led to major advances in the capacity to actuate shape changes of DNA origami devices and incorporate DNA origami into larger assemblies, which open the prospect of using DNA to design shape-morphing assemblies as components of micro-scale reconfigurable or sensing materials. Indeed, a few studies have constructed higher order assemblies with reconfigurable devices; however, these demonstrations have utilized structures with relatively simple motion, primarily hinges that open and close. To advance the shape changing capabilities of DNA origami assemblies, we developed a multi-component DNA origami 6-bar mechanism that can be reconfigured into various shapes and can be incorporated into larger assemblies while maintaining capabilities for a variety of shape transformations. We demonstrate the folding of the 6-bar mechanism into four different shapes and demonstrate multiple transitions between these shapes. We also studied the shape preferences of the 6-bar mechanism in competitive folding reactions to gain insight into the relative free energies of the shapes. Furthermore, we polymerized the 6-bar mechanism into tubes with various cross-sections, defined by the shape of the individual mechanism, and we demonstrate the ability to change the shape of the tube cross-section. This expansion of current single-device reconfiguration to higher order scales provides a foundation for nano to micron scale DNA nanotechnology applications such as biosensing or materials with tunable properties. 
    more » « less
  2. Abstract Fabrication of micro- and nanoscale electronic components has become increasingly demanding due to device and interconnect scaling combined with advanced packaging and assembly for electronic, aerospace, and medical applications. Recent advances in additive manufacturing have made it possible to fabricate microscale, 3D interconnect structures but heat transfer during the fabrication process is one of the most important phenomena influencing the reliable manufacturing of these interconnect structures. In this study, optical absorption and scattering by three-dimensional (3D) nanoparticle packings are investigated to gain insight into micro/nano heat transport within the nanoparticles. Because drying of colloidal solutions creates different configurations of nanoparticles, the plasmonic coupling in three different copper nanoparticle packing configurations was investigated: simple cubic (SC), face-centered cubic (FCC), and hexagonal close packing (HCP). Single-scatter albedo (ω) was analyzed as a function of nanoparticle size, packing density, and configuration to assess effect for thermo-optical properties and plasmonic coupling of the Cu nanoparticles within the nanoparticle packings. This analysis provides insight into plasmonically enhanced absorption in copper nanoparticle particles and its consequences for laser heating of nanoparticle assemblies. 
    more » « less
  3. Nearly thirty years after its inception, the field of DNA-programmed colloidal self-assembly has begun to realize its initial promise. In this review, we summarize recent developments in designing effective interactions and understanding the dynamic self-assembly pathways of DNA-coated nanoparticles and microparticles, as well as how these advances have propelled tremendous progress in crystal engineering. We also highlight exciting new directions showing that new classes of subunits combining nanoparticles with DNA origami can be used to engineer novel multicomponent assemblies, including structures with self-limiting, finite sizes. We conclude by providing an outlook on how recent theoretical advances focusing on the kinetics of self-assembly could usher in new materials-design opportunities, like the possibility of retrieving multiple distinct target structures from a single suspension or accessing new classes of materials that are stabilized by energy dissipation, mimicking self-assembly in living systems. 
    more » « less
  4. Peptide conjugate molecules comprising a gold-binding peptide (e.g., AYSSGAPPMPPF) attached to an aliphatic tail have proven to be powerful agents for directing the synthesis and assembly of gold nanoparticle superstructures, in particular chiral helices having interesting plasmonic chiroptical properties. The composition and structure of these molecular agents can be tailored to carefully tune the structure and properties of gold nanoparticle single and double helices. To date, modifications to the β-sheet region (AYSSGA) of the peptide sequence have not been exploited to control the metrics and assembly of such superstructures. We report here that systematic peptide sequence variation in a series of gold-binding peptide conjugate molecules can be leveraged not only to affect the assembly of peptide conjugates but also to control the synthesis, assembly, and optical properties of gold nanoparticle superstructures. Depending upon the hydrophobicity of a single-amino acid variant, the conjugates yield either dispersed gold nanoparticles or helical superstructures. These results provide evidence that subtle changes to peptide sequence, via single-amino acid variation in the β-sheet region, can be leveraged to program structural control in chiral gold nanoparticle superstructures. 
    more » « less
  5. Abstract Spatial confinement of matter in functional nanostructures has propelled these systems to the forefront of nanoscience, both as a playground for exotic physics and quantum phenomena and in multiple applications including plasmonics, optoelectronics, and sensing. In parallel, the emergence of monochromated electron energy loss spectroscopy (EELS) has enabled exploration of local nanoplasmonic functionalities within single nanoparticles and the collective response of nanoparticle assemblies, providing deep insight into associated mechanisms. However, modern synthesis processes for plasmonic nanostructures are often limited in the types of accessible geometry, and materials and are limited to spatial precisions on the order of tens of nm, precluding the direct exploration of critical aspects of the structure‐property relationships. Here, the atomic‐sized probe of the scanning transmission electron microscope is used to perform precise sculpting and design nanoparticle configurations. Using low‐loss EELS, dynamic analyses of the evolution of the plasmonic response are provided. It is shown that within self‐assembled systems of nanoparticles, individual nanoparticles can be selectively removed, reshaped, or patterned with nanometer‐level resolution, effectively modifying the plasmonic response in both space and energy. This process significantly increases the scope for design possibilities and presents opportunities for unique structure development, which are ultimately the key for nanophotonic design. 
    more » « less