skip to main content


Title: Scientists' warning on endangered food webs
Abstract. All organisms are ultimately dependent on a large diversity of consumptiveand non-consumptive interactions established with other organisms, formingan intricate web of interdependencies. In 1992, when 1700 concernedscientists issued the first “World Scientists' Warning to Humanity”, ourunderstanding of such interaction networks was still in its infancy. Bysimultaneously considering the species (nodes) and the links that glue themtogether into functional communities, the study of modern food webs – ormore generally ecological networks – has brought us closer to a predictivecommunity ecology. Scientists have now observed, manipulated, and modelledthe assembly and the collapse of food webs under various global changestressors and identified common patterns. Most stressors, such as increasingtemperature, biological invasions, biodiversity loss, habitat fragmentation,over-exploitation, have been shown to simplify food webs byconcentrating energy flow along fewer pathways, threatening long-termcommunity persistence. More worryingly, it has been shown that communitiescan abruptly change from highly diverse to simplified stable states withlittle or no warning. Altogether, evidence shows that apart from thechallenge of tackling climate change and hampering the extinction ofthreatened species, we need urgent action to tackle large-scale biologicalchange and specifically to protect food webs, as we are under the risk of pushingentire ecosystems outside their safe zones. At the same time, we need togain a better understanding of the global-scale synergies and trade-offsbetween climate change and biological change. Here we highlight the mostpressing challenges for the conservation of natural food webs and recentadvances that might help us addressing such challenges.  more » « less
Award ID(s):
1754221
NSF-PAR ID:
10165673
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Web Ecology
Volume:
20
Issue:
1
ISSN:
1399-1183
Page Range / eLocation ID:
1 to 10
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. BACKGROUND The availability of nitrogen (N) to plants and microbes has a major influence on the structure and function of ecosystems. Because N is an essential component of plant proteins, low N availability constrains the growth of plants and herbivores. To increase N availability, humans apply large amounts of fertilizer to agricultural systems. Losses from these systems, combined with atmospheric deposition of fossil fuel combustion products, introduce copious quantities of reactive N into ecosystems. The negative consequences of these anthropogenic N inputs—such as ecosystem eutrophication and reductions in terrestrial and aquatic biodiversity—are well documented. Yet although N availability is increasing in many locations, reactive N inputs are not evenly distributed globally. Furthermore, experiments and theory also suggest that global change factors such as elevated atmospheric CO 2 , rising temperatures, and altered precipitation and disturbance regimes can reduce the availability of N to plants and microbes in many terrestrial ecosystems. This can occur through increases in biotic demand for N or reductions in its supply to organisms. Reductions in N availability can be observed via several metrics, including lowered nitrogen concentrations ([N]) and isotope ratios (δ 15 N) in plant tissue, reduced rates of N mineralization, and reduced terrestrial N export to aquatic systems. However, a comprehensive synthesis of N availability metrics, outside of experimental settings and capable of revealing large-scale trends, has not yet been carried out. ADVANCES A growing body of observations confirms that N availability is declining in many nonagricultural ecosystems worldwide. Studies have demonstrated declining wood δ 15 N in forests across the continental US, declining foliar [N] in European forests, declining foliar [N] and δ 15 N in North American grasslands, and declining [N] in pollen from the US and southern Canada. This evidence is consistent with observed global-scale declines in foliar δ 15 N and [N] since 1980. Long-term monitoring of soil-based N availability indicators in unmanipulated systems is rare. However, forest studies in the northeast US have demonstrated decades-long decreases in soil N cycling and N exports to air and water, even in the face of elevated atmospheric N deposition. Collectively, these studies suggest a sustained decline in N availability across a range of terrestrial ecosystems, dating at least as far back as the early 20th century. Elevated atmospheric CO 2 levels are likely a main driver of declines in N availability. Terrestrial plants are now uniformly exposed to ~50% more of this essential resource than they were just 150 years ago, and experimentally exposing plants to elevated CO 2 often reduces foliar [N] as well as plant-available soil N. In addition, globally-rising temperatures may raise soil N supply in some systems but may also increase N losses and lead to lower foliar [N]. Changes in other ecosystem drivers—such as local climate patterns, N deposition rates, and disturbance regimes—individually affect smaller areas but may have important cumulative effects on global N availability. OUTLOOK Given the importance of N to ecosystem functioning, a decline in available N is likely to have far-reaching consequences. Reduced N availability likely constrains the response of plants to elevated CO 2 and the ability of ecosystems to sequester carbon. Because herbivore growth and reproduction scale with protein intake, declining foliar [N] may be contributing to widely reported declines in insect populations and may be negatively affecting the growth of grazing livestock and herbivorous wild mammals. Spatial and temporal patterns in N availability are not yet fully understood, particularly outside of Europe and North America. Developments in remote sensing, accompanied by additional historical reconstructions of N availability from tree rings, herbarium specimens, and sediments, will show how N availability trajectories vary among ecosystems. Such assessment and monitoring efforts need to be complemented by further experimental and theoretical investigations into the causes of declining N availability, its implications for global carbon sequestration, and how its effects propagate through food webs. Responses will need to involve reducing N demand via lowering atmospheric CO 2 concentrations, and/or increasing N supply. Successfully mitigating and adapting to declining N availability will require a broader understanding that this phenomenon is occurring alongside the more widely recognized issue of anthropogenic eutrophication. Intercalibration of isotopic records from leaves, tree rings, and lake sediments suggests that N availability in many terrestrial ecosystems has steadily declined since the beginning of the industrial era. Reductions in N availability may affect many aspects of ecosystem functioning, including carbon sequestration and herbivore nutrition. Shaded areas indicate 80% prediction intervals; marker size is proportional to the number of measurements in each annual mean. Isotope data: (tree ring) K. K. McLauchlan et al. , Sci. Rep. 7 , 7856 (2017); (lake sediment) G. W. Holtgrieve et al. , Science 334 , 1545–1548 (2011); (foliar) J. M. Craine et al. , Nat. Ecol. Evol. 2 , 1735–1744 (2018) 
    more » « less
  2. Abstract

    Nutrients, such as nitrogen and phosphorus, provide vital support for human life, but overloading nutrients to the Earth system leads to environmental concerns, such as water and air pollution on local scales and climate change on the global scale. With an urgent need to feed the world's growing population and the growing concern over nutrient pollution and climate change, sustainable nutrient management has become a major challenge for this century. To address this challenge, the growing body of research on nutrient budgets, namely the nutrient inputs and outputs of a given system, has provided great opportunities for improving scientific knowledge of the complex nutrient cycles in the coupled human and natural systems. This knowledge can help inform stakeholders, such as farmers, consumers, and policy makers, on their decisions related to nutrient management. This paper systematically reviews major challenges, as well as opportunities, in defining, quantifying, and applying nutrient budgets. Nutrient budgets have been defined for various systems with different research or application purposes, but the lack of consistency in the system definition and its budget terms has hindered intercomparison among studies and experience‐sharing among researchers and regions. Our review synthesizes existing nutrient budgets under a framework with five systems (i.e.,Soil‐Plantsystem,Animalsystem,Animal‐Plant‐Soilsystem,Agro‐Foodsystem, andLandscapesystem) and four spatial scales (i.e., Plot and Farm, Watershed, National, and Global scales). We define these systems and identify issues of nitrogen and phosphorus budgets within each. Few nutrient budgets have been well balanced at any scale, due to the large uncertainties in the quantification of several major budget terms. The type and level of challenges vary across spatial scales and also differ among nutrients. Improvement in nutrient budgets will rely not only on the technological advancement of scientific observations and models but also on better bookkeeping of human activity data. While some nutrient budget terms may need decades, or even centuries, of research to be well quantified within desirable levels of uncertainties, it is imperative to effectively communicate to interested stakeholders our understanding of nutrient budgets so that scientists and a variety of stakeholders can work together to address the sustainable nutrient management challenge of this century.

     
    more » « less
  3. Abstract

    Food webs show the architecture of trophic relationships, revealing the biodiversity and species interactions in an ecosystem. Understanding which factors modulate the structure of food webs offers us the ability to predict how they will change when influential factors are altered. To date, most of the research about food webs has focused on species interactions whereas the influences of surrounding environments have been overlooked. Here, using network analysis, we identified how the structure of aquatic food webs varied across a range of geophysical conditions within a whole stream system. Within a headwater basin in the Cascade Mountain Range, Oregon, USA, macroinvertebrate and vertebrate composition was investigated at 18 sites. Predator–prey interactions were compiled based on existing literature and dietary analysis. Several structural network metrics were calculated for each food web. We show that the structure of food webs was predictable based on geophysical features at both local (i.e., slope) and broader (i.e., basin size) spatial extents. Increased omnivory, greater connectance, shorter path lengths, and ultimately greater complexity and resilience existed downstream compared to upstream in the stream network. Surprisingly, the variation in food web structure was not associated with geographic proximity. Structural metric values and abundance of omnivory suggest high levels of stability for these food webs. There is a predictable variation in the structure of food webs across the network that is influenced by both longitudinal position within streams and patchy discontinuities in habitat. Hence, findings illustrate that the slightly differing perspectives from the River Continuum Concept, Discontinuity Patch Dynamics, and Process Domains can be integrated and unified using food web networks. Our analyses extend ecologists’ understanding of the stability of food webs and are a vital step toward predicting how webs and communities may respond to both natural disturbances and current global environmental change.

     
    more » « less
  4. Our ability to project changes to the climate via anthropogenic forcing has steadily increased over the last five decades. Yet, biologists still lack accurate projections about climate change impacts. Despite recent advances, biologists still often rely on correlative approaches to make projections, ignore important mechanisms, develop models with limited coordination, and lack much of the data to inform projections and test them. In contrast, atmospheric scientists have incorporated mechanistic data, established a global network of weather stations, and apply multi‐model inference by comparing divergent model projections. I address the following questions: How have the two fields developed through time? To what degree does biological projection differ from climate projection? What is needed to make similar progress in biological projection? Although the challenges in biodiversity projections are great, I highlight how biology can make substantial progress in the coming years. Most obstacles are surmountable and relate to history, lag times, scientific culture, international organization, and finances. Just as climate change projections have improved, biological modeling can improve in accuracy by incorporating mechanistic understanding, employing multi‐model ensemble approaches, coordinating efforts worldwide, and validating projections against records from a well‐designed network of biotic stations. Now that climate scientists can make better projections of climate change, biologists need to project and prevent its impacts on biodiversity.

    This article is categorized under:

    Climate, Ecology, and Conservation > Modeling Species and Community Interactions

     
    more » « less
  5. Abstract Why do some biological systems and communities persist while others fail? Robustness, a system's stability, and resilience, the ability to return to a stable state, are key concepts that span multiple disciplines within and outside the biological sciences. Discovering and applying common rules that govern the robustness and resilience of biological systems is a critical step toward creating solutions for species survival in the face of climate change, as well as the for the ever-increasing need for food, health, and energy for human populations. We propose that network theory provides a framework for universal scalable mathematical models to describe robustness and resilience and the relationship between them, and hypothesize that resilience at lower organization levels contribute to robust systems. Insightful models of biological systems can be generated by quantifying the mechanisms of redundancy, diversity, and connectivity of networks, from biochemical processes to ecosystems. These models provide pathways towards understanding how evolvability can both contribute to and result from robustness and resilience under dynamic conditions. We now have an abundance of data from model and non-model systems and the technological and computational advances for studying complex systems. Several conceptual and policy advances will allow the research community to elucidate the rules of robustness and resilience. Conceptually, a common language and data structure that can be applied across levels of biological organization needs to be developed. Policy advances such as cross-disciplinary funding mechanisms, access to affordable computational capacity, and the integration of network theory and computer science within the standard biological science curriculum will provide the needed research environments. This new understanding of biological systems will allow us to derive ever more useful forecasts of biological behaviors and revolutionize the engineering of biological systems that can survive changing environments or disease, navigate the deepest oceans, or sustain life throughout the solar system. 
    more » « less