skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Using machine learning techniques to aid environmental policy analysis: a teaching case in big data and electric vehicle infrastructure
For a growing class of prediction problems, big data and machine learning analyses can greatly enhance our understanding of the effectiveness of public investments and public policy. However, the outputs of many machine learning models are often abstract and inaccessible to policy communities or the general public. In this article, we describe a hands-on teaching case that is suitable for use in a graduate or advanced undergraduate public policy, public affairs or environmental studies classroom. Students will engage on the use of increasingly popular machine learning classification algorithms and cloud-based data visualization tools to support policy and planning on the theme of electric vehicle mobility and connected infrastructure. By using these tools, students will critically evaluate and convert large and complex datasets into human understandable visualization for communication and decision-making. The tools also enable user flexibility to engage with streaming data sources in a new creative design with little technical background.  more » « less
Award ID(s):
1931980 1945332
PAR ID:
10165859
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Case studies in the environment
ISSN:
2473-9510
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Disciplinary Data Science Topic: Statistics - Descriptive Statistics, Histograms, Scatter Plot Data Science Learning Goals: Students will know how to calculate basic statistics such as mean, standard deviation and relate the use of these statistics learned in class with real-world data and use them to describe the data Students will be able to construct visualization tools such as a histogram to get the range and distribution of the data set. Students will also learn how to interpret the results. Students will be able to use popular data science tools such as Python to analyze the data. 
    more » « less
  2. Existing approaches to teaching artificial intelligence and machine learning often focus on the use of pre-trained models or fine-tuning an existing black-box architecture. We believe advanced ML topics, such as optimization and adversarial examples, can be learned by early high school age students given appropriate support. Our approach focuses on enabling students to develop deep intuition about these complex concepts by first making them accessible to novices through interactive tools, pre-programmed games, and carefully designed programming activities. Then, students are able to engage with the concepts via meaningful, hands-on experiences that span the entire ML process from data collection to model optimization and inspection. 
    more » « less
  3. We describe an online citizen science platform (www.mindhive.science) for human brain and behavior research that uses a participatory science learning approach to engage learners in the full spectrum of scientific inquiry. Building on an open science philosophy, it features a collaborative study design environment comprising an experiment builder, a database of validated tasks and surveys, and a public-facing study page; a peer review center where students are able to engage with and reflect on studies designed by peers from their own schools and schools around the globe; and GDPR-compliant data collection, data management, and data visualization and interpretation functionality. We describe student-initiated research generated during the COVID-19 pandemic to illustrate how the platform supports student-teacher-scientist community partnerships for participatory learning in authentic inquiry. 
    more » « less
  4. Artificial Intelligence (AI) enhanced systems are widely adopted in post-secondary education, however, tools and activities have only recently become accessible for teaching AI and machine learning (ML) concepts to K-12 students. Research on K-12 AI education has largely included student attitudes toward AI careers, AI ethics, and student use of various existing AI agents such as voice assistants; most of which has focused on high school and middle school. There is no consensus on which AI and Machine Learning concepts are grade-appropriate for elementary-aged students or how elementary students explore and make sense of AI and ML tools. AI is a rapidly evolving technology and as future decision-makers, children will need to be AI literate[1]. In this paper, we will present elementary students’ sense-making of simple machine-learning concepts. Through this project, we hope to generate a new model for introducing AI concepts to elementary students into school curricula and provide tangible, trainable representations of ML for students to explore in the physical world. In our first year, our focus has been on simpler machine learning algorithms. Our desire is to empower students to not only use AI tools but also to understand how they operate. We believe that appropriate activities can help late elementary-aged students develop foundational AI knowledge namely (1) how a robot senses the world, and (2) how a robot represents data for making decisions. Educational robotics programs have been repeatedly shown to result in positive learning impacts and increased interest[2]. In this pilot study, we leveraged the LEGO® Education SPIKE™ Prime for introducing ML concepts to upper elementary students. Through pilot testing in three one-week summer programs, we iteratively developed a limited display interface for supervised learning using the nearest neighbor algorithm. We collected videos to perform a qualitative evaluation. Based on analyzing student behavior and the process of students trained in robotics, we found some students show interest in exploring pre-trained ML models and training new models while building personally relevant robotic creations and developing solutions to engineering tasks. While students were interested in using the ML tools for complex tasks, they seemed to prefer to use block programming or manual motor controls where they felt it was practical. 
    more » « less
  5. Abstract As artificial intelligence (AI) grows in popularity and importance—both as a domain within broader computing research and in society at large—increasing focus will need to be paid to the ethical governance of this emerging technology. The attitudes and competencies with respect to AI ethics and policy among post-secondary students studying computer science (CS) are of particular interest, as many of these students will go on to play key roles in the development and deployment of future AI innovations. Despite this population of computer scientists being at the forefront of learning about and using AI tools, their attitudes towards AI remain understudied in the literature. In an effort to begin to close this gap, in fall 2024 we fielded a survey ($$n=117$$) to undergraduate and graduate students enrolled in CS courses at a large public university in the United States to assess their attitudes towards the nascent fields of AI ethics and policy. Additionally, we conducted one-on-one follow-up interviews with 13 students to elicit more in-depth responses on topics such as the use of AI tools in the classroom, ethical impacts of AI, and government regulation of AI. In this paper, we describe the findings of our exploratory study, drawing parallels and contrasts to broader public opinion polling in the United States. We conclude by evaluating the implications of CS student attitudes on the future of AI education and governance. 
    more » « less