skip to main content


Title: Physical and Mechanical Properties of Ottawa F65 Sand
This paper presents the results of soil characterization and element tests of Ottawa F65 sand. The data presented is intended to be used as calibration material for the prediction exercise conducted as part of the Liquefaction Experiments and Analysis Project (LEAP 2017). The databank generated includes soil specific gravity tests, particle size analysis, hydraulic conductivity tests, maximum and minimum void ratio tests, and cyclic triaxial stress-controlled tests. An effort was made to ensure the consistency and repeatability of the test results by reducing the sources of variability in the sample preparations and increasing the number of tests. The uniformity of the soil was evaluated by conducting tests on samples from five different batches. The results showed that the sand is uniform among the five batches. Due to significant variability in previously reported maximum and minimum void ratio results, the effects of the test operator were studied by comparing test results obtained from three different operators. For the triaxial tests, a constant height dry pluviation method was used for sample preparation. To eliminate the effect of the human error in maintaining a constant drop height and to ensure consistency of the sand fabric between different samples, a device was developed to facilitate the sample preparation. The cyclic triaxial experiments were performed using three different soil densities, and a liquefaction strength curve was obtained for each density based on a 2.5% single amplitude axial strain criteria. The developed databank in this study was made publicly available for the community through DesignSafe.  more » « less
Award ID(s):
1635524
NSF-PAR ID:
10166205
Author(s) / Creator(s):
Date Published:
Journal Name:
Proceedings of LEAP-UCD-2017 workshop
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper presents a summary of the element test simulations (calibration simulations) submitted by 11 numerical simulation (prediction) teams that participated in the LEAP-2017 prediction exercise. A significant number of monotonic and cyclic triaxial (Vasko, An investigation into the behavior of Ottawa sand through monotonic and cyclic shear tests. Masters Thesis, The George Washington University, 2015; Vasko et al., LEAP-GWU-2015 Laboratory Tests. DesignSafe-CI, Dataset, 2018; El Ghoraiby et al., LEAP 2017: Soil characterization and element tests for Ottawa F65 sand. The George Washington University, Washington, DC, 2017; El Ghoraiby et al., LEAP-2017 GWU Laboratory Tests. DesignSafe-CI, Dataset, 2018; El Ghoraiby et al., Physical and mechanical properties of Ottawa F65 Sand. In B. Kutter et al. (Eds.), Model tests and numerical simulations of liquefaction and lateral spreading: LEAP-UCD-2017. New York: Springer, 2019) and direct simple shear tests (Bastidas, Ottawa F-65 Sand Characterization. PhD Dissertation, University of California, Davis, 2016) are available for Ottawa F-65 sand. The focus of this element test simulation exercise is to assess the performance of the constitutive models used by participating team in simulating the results of undrained stress-controlled cyclic triaxial tests on Ottawa F-65 sand for three different void ratios (El Ghoraiby et al., LEAP 2017: Soil characterization and element tests for Ottawa F65 sand. The George Washington University, Washington, DC, 2017; El Ghoraiby et al., LEAP-2017 GWU Laboratory Tests. DesignSafe-CI, Dataset, 2018; El Ghoraiby et al., Physical and mechanical properties of Ottawa F65 Sand. In B. Kutter et al. (Eds.), Model tests and numerical simulations of liquefaction and lateral spreading: LEAP-UCD-2017. New York: Springer, 2019). The simulated stress paths, stress-strain responses, and liquefaction strength curves show that majority of the models used in this exercise are able to provide a reasonably good match to liquefaction strength curves for the highest void ratio (0.585) but the differences between the simulations and experiments become larger for the lower void ratios (0.542 and 0.515). 
    more » « less
  2. Cyclic triaxial strain controlled tests conducted to study the liquefaction strength of Ottawa F65 sand at three different densities. The dataset may be used in the assessment of the performance of current and future constitutive models for sands. 
    more » « less
  3. Calibration and validation of constitutive models and numerical modeling techniques used in analysis of soil liquefaction and its effects are often based on extensive comparisons with the results of element tests and centrifuge experiments. While good quality experimental data are available to understand and quantify the stress-strain-strength response of liquefiable soils in monotonic and cyclic drained/undrained element (triaxial and direct simple shear) tests, the results of these experiments are often less repeatable when the soil approaches liquefaction state and relatively large deviatoric strains suddenly develop within a few cycles of loading. The main source of these less repeatable patterns of soil behavior appears to be instability rather than the attainment of a state of material failure. The goal of this paper is to investigate the role of instability on the stress-strain response of liquefiable soils by using a critical state sand plasticity model that is enriched with an internal length scale representing the potential shear bands that may develop during monotonic or cyclic loading conditions. Through a series of numerical simulations, it is shown that the global stress-strain response measured in the element tests is a good approximation of the soil constitutive response before an unstable condition such as shear banding or liquefaction develops in the soil specimen. 
    more » « less
  4. The LEAP (Liquefaction Experiment and Analysis Project) is a continuing international collaboration to create a reliable databank of high-quality experimental results for the validation of numerical tools. This paper investigates the response of a floating rigid sheet-pile quay wall under conditions of seismically induced liquefaction, embedded in dense sand and supporting a saturated liquefiable soil deposit. The experimental challenges related to repeatability in physical modeling in such a soil-structure-interaction regime are also discussed. To this end, three experiments performed at Rensselaer Polytechnic Institute (RPI) as part of the experimental campaign for the LEAP-2020 are discussed herein. Models RPI_REP-2020 and RPI10-2020 investigate the repeatability potential in centrifuge modeling in the presence of soil-structure-interaction. Model RPI_P-2020 is the pilot test of the LEAP-2020 experimental campaign at RPI and investigates the effect of the wall’s initial orientation on the system’s dynamic response and soil liquefaction, as a possible “defect” in the model construction procedure. The three models were built in a consistent way, employed comparable instrumentation layout while simulating the same prototype and comparable soil conditions. The three models were subjected to the same acceleration target input motion, which was repeated across all three models with high consistency. 
    more » « less
  5. The stress-strain behavior of Ottawa F65 sand is investigated through an extensive series of constant volume stress-controlled cyclic direct simple shear (CDSS) tests performed at different densities, overburden pressures, and static shear stresses prior to cyclic shearing to quantify their effects on the cyclic strength of Ottawa F65 sand. Results of the CDSS tests are used in the constitutive model calibration exercise for the Liquefaction Experiments and Analysis Project (LEAP-2022). The collected database of CDSS tests is used to develop an Artificial Neural Network (ANN) model capable of predicting Ottawa F65 liquefaction strength for a specified set of relative density, overburden pressure, static shear stress ratio, and cyclic shear stress ratio. After training, validation and testing, the ANN model is further assessed using blind prediction of the liquefaction strength in new CDSS tests for a relative density and overburden stress that are not available in the training dataset. CDSS tests under similar conditions were then carried out in the laboratory for validation of the ANN model. The comparisons of the predictions with the experimental results have demonstrated the ANN model predictive capability for liquefaction strength and its sensitivity to changes in relative density, overburden stress and cyclic stress ratio. 
    more » « less