skip to main content


Title: Managing Collaborative Tasks within Heterogeneous Robotic Swarms using Swarm Contracts
The growing number of applications in Cyber-Physical Systems (CPS) involving different types of robots while maintaining interoperability and trust is an ongoing challenge faced by traditional centralized systems. This paper presents what is, to the best of our knowledge, the first integration of the Robotic Operating System (ROS) with the Ethereum blockchain using physical robots. We implement a specialized smart contract framework called “Swarm Contracts” that rely on blockchain technology in real-world applications for robotic agents with human interaction to perform collaborative tasks while ensuring trust by motivating the agents with incentives using a token economy with a self-governing structure. The use of open-source technologies, including robot hardware platforms such as TurtleBot3, Universal Robot arm, and ROS, enables the ability to connect a wide range of robot types to the framework we propose. Going beyond simulations, we demonstrate the robustness of the proposed system in real-world conditions with actual hardware robots.  more » « less
Award ID(s):
1718755 2132994
NSF-PAR ID:
10388865
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
IEEE International Conference on Decentralized Applications and Infrastructures (DAPPS)
Page Range / eLocation ID:
48 to 55
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The use of blockchain in cyber-physical systems, such as robotics, is an area with immense potential to address many shortcomings in robotic coordination and control. In traditional swarm robotic applications, where homogeneous robots are utilized, it is possible to replace a robot if it malfunctions, and it can be assumed that all robots are interchangeable. However, in many real-world applications spanning from search and rescue missions to future household robotic appliances, heterogeneous robots will need to work together with the other robots and human agents to achieve specific tasks. Nevertheless, no such system exists. Therefore, we propose a system that utilizes a token economy for robotic agents that makes agents responsive to token acquisition as an incentive for collaboration in achieving a given task. The economy enables the system to self-govern, even under Byzantine and adversarial settings. We further incorporate a novel subcontracting framework within a blockchain environment to allow the robotic agents to efficiently and cost-effectively perform complex jobs requiring multiple agents with various capabilities. We conducted a thorough evaluation of the system in a prototype warehouse application scenario, and the results are promising. 
    more » « less
  2. Long-term deployment of a fleet of mobile robots requires reliable and secure two-way communication channels between individual robots and remote human operators for supervision and tasking. Existing open-source solutions to this problem degrade in performance in challenging real-world situations such as intermittent and low-bandwidth connectivity, do not provide security control options, and can be computationally expensive on hardware-constrained mobile robot platforms. In this paper, we present Robofleet, a lightweight open-source system which provides inter-robot communication, remote monitoring, and remote tasking for a heterogenous fleet of ROS-enabled service-mobile robots that is designed with the practical goals of resilience to network variance and security control in mind.Robofleet supports multi-user, multi-robot communication via a central server. This architecture deduplicates network traffic between robots, significantly reducing overall network load when compared with native ROS communication. This server also functions as a single entrypoint into the system, enabling security control and user authentication. Individual robots run the lightweight Robofleet client, which is responsible for exchanging messages with the Robofleet server. It automatically adapts to adverse network conditions through backpressure monitoring as well as topic-level priority control, ensuring that safety-critical messages are successfully transmitted. Finally, the system includes a web-based visualization tool that can be run on any internet-connected, browser-enabled device to monitor and control the fleet.We compare Robofleet to existing methods of robotic communication, and demonstrate that it provides superior resilience to network variance while maintaining performance that exceeds that of widely-used systems. 
    more » « less
  3. This paper proposes a Priority-driven Accelerator Access Management (PAAM) framework for multi-process robotic applications built on top of the Robot Operating System (ROS) 2 middleware platform. The framework addresses the issue of predictable execution of time- and safety-critical callback chains that require hardware accelerators such as GPUs and TPUs. PAAM provides a standalone ROS executor that acts as an accelerator resource server, arbitrating accelerator access requests from all other callbacks at the application layer. This approach enables coordinated and priority-driven accelerator access management in multi-process robotic systems. The framework design is directly applicable to all types of accelerators and enables granular control over how specific chains access accelerators, making it possible to achieve predictable real-time support for accelerators used by safety-critical callback chains without making changes to underlying accelerator device drivers. The paper shows that PAAM also offers a theoretical analysis that can upper bound the worst-case response time of safety-critical callback chains that necessitate accelerator access. This paper also demonstrates that complex robotic systems with extensive accelerator usage that are integrated with PAAM may achieve up to a 91% reduction in end-to-end response time of their critical callback chains. 
    more » « less
  4. Weitzenfeld, A (Ed.)
    Studies involving the group predator behavior of wolves have inspired multiple robotic architectures to mimic these biological behaviors in their designs and research. In this work, we aim to use robotic systems to mimic wolf packs' single and group behavior. This work aims to extend the original research by Weitzenfeld et al [7] and evaluate under a new multi-robot robot system architecture. The multiple robot architecture includes a 'Prey' pursued by a wolf pack consisting of an 'Alpha' and 'Beta' robotic group. The Alpha Wolf' will be the group leader, searching and tracking the 'Prey.' At the same time, the multiple Beta 'Wolves' will follow behind the Alpha, tracking and maintaining a set distance in the formation. The robotic systems used are multiple raspberry pi-robots designed in the USF bio-robotics lab that use a combination of color cameras and distance sensors to assist the Beta 'Wolves' in keeping a set distance between the Alpha "Wolf" and themselves. Several experiments were performed in simulation, using Webots, and with physical robots. An analysis was done comparing the performance of the physical robot in the real world to the virtual robot in the simulated environment. 
    more » « less
  5. Trust has been identified as a central factor for effective human-robot teaming. Existing literature on trust modeling predominantly focuses on dyadic human-autonomy teams where one human agent interacts with one robot. There is little, if not no, research on trust modeling in teams consisting of multiple human agents and multiple robotic agents. To fill this research gap, we present the trust inference and propagation (TIP) model for trust modeling in multi-human multi-robot teams. We assert that in a multi-human multi-robot team, there exist two types of experiences that any human agent has with any robot: direct and indirect experiences. The TIP model presents a novel mathematical framework that explicitly accounts for both types of experiences. To evaluate the model, we conducted a human-subject experiment with 15 pairs of participants (N=30). Each pair performed a search and detection task with two drones. Results show that our TIP model successfully captured the underlying trust dynamics and significantly outperformed a baseline model. To the best of our knowledge, the TIP model is the first mathematical framework for computational trust modeling in multi-human multi-robot teams. 
    more » « less