Internet of Things (IoT), edge/fog computing, and the cloud are fueling rapid development in smart connected cities. Given the increasing rate of urbanization, the advancement of these technologies is a critical component of mitigating demand on already constrained transportation resources. Smart transportation systems are most effectively implemented as a decentralized network, in which traffic sensors send data to small low-powered devices called Roadside Units (RSUs). These RSUs host various computation and networking services. Data driven applications such as optimal routing require precise real-time data, however, data-driven approaches are susceptible to data integrity attacks. Therefore we propose a multi-tiered anomaly detection framework which utilizes spare processing capabilities of the distributed RSU network in combination with the cloud for
fast, real-time detection. In this paper we present a novel real time anomaly detection framework. Additionally, we focus on implementation of our framework in smart-city transportation systems by providing a constrained clustering algorithm for RSU placement throughout the network. Extensive experimental validation using traffic data from Nashville, TN demonstrates that the proposed methods significantly reduce computation
requirements while maintaining similar performance to current state of the art anomaly detection methods.
more »
« less
On Decentralized Route Planning Using the Road Side Units as Computing Resources
Residents in cities typically use third-party platforms such as Google Maps for route planning services. While providing near real-time processing, these state of the art centralized deployments are limited to multiprocessing environments in data centers. This raises privacy concerns, increases risk for critical data and causes vulnerability to network failure. In this paper, we propose to use decentralized road side units (RSU) (owned by the city) to perform route planning. We divide the city road network into grids, each assigned an RSU where traffic data is kept locally, increasing security and resiliency such that the system can perform even if some RSUs fail. Route generation is done in two steps. First, an optimal grid sequence is generated, prioritizing shortest path calculation accuracy but not RSU load. Second, we assign route planning tasks to the grids in the sequence. Keeping in mind RSU load and constraints, tasks can be allocated and executed in any non-optimal grid but with lower accuracy. We evaluate this system using Metropolitan Nashville road traffic data. We divided the area into 613 grids, configuring load and neighborhood sizes to meet delay constraints while maximizing model accuracy. The results show that there is a 30% decrease in processing time with a decrease in model accuracy of 99% to 92.3%, by simply increasing the search area to the optimal grid's immediate neighborhood.
more »
« less
- Award ID(s):
- 1818901
- NSF-PAR ID:
- 10166775
- Date Published:
- Journal Name:
- IEEE International Conference on Fog Computing (ICFC)
- Page Range / eLocation ID:
- 1 to 8
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Learning to route has received significant research momentum as a new approach for the route planning problem in intelligent transportation systems. By exploring global knowledge of geographical areas and topological structures of road networks to facilitate route planning, in this work, we propose a novel Generative Adversarial Network (GAN) framework, namely Progressive Route Planning GAN (ProgRPGAN), for route planning in road networks. The novelty of ProgRPGAN lies in the following aspects: 1) we propose to plan a route with levels of increasing map resolution, starting on a low-resolution grid map, gradually refining it on higher-resolution grid maps, and eventually on the road network in order to progressively generate various realistic paths; 2) we propose to transfer parameters of the previous-level generator and discriminator to the subsequent generator and discriminator for parameter initialization in order to improve the efficiency and stability in model learning; and 3) we propose to pre-train embeddings of grid cells in grid maps and intersections in the road network by capturing the network topology and external factors to facilitate effective model learning. Empirical result shows that ProgRPGAN soundly outperforms the state-of-the-art learning to route methods, especially for long routes, by 9.46% to 13.02% in F1-measure on multiple large-scale real-world datasets. ProgRPGAN, moreover, effectively generates various realistic routes for the same query.more » « less
-
Vehicle tracking, a core application to smart city video analytics, is becoming more widely deployed than ever before thanks to the increasing number of traffic cameras and recent advances in computer vision and machine-learning. Due to the constraints of bandwidth, latency, and privacy concerns, tracking tasks are more preferable to run on edge devices sitting close to the cameras. However, edge devices are provisioned with a fixed amount of computing budget, making them incompetent to adapt to time-varying and imbalanced tracking workloads caused by traffic dynamics. In coping with this challenge, we propose WatchDog, a real-time vehicle tracking system that fully utilizes edge nodes across the road network. WatchDog leverages computer vision tasks with different resource-accuracy tradeoffs, and decomposes and schedules tracking tasks judiciously across edge devices based on the current workload to maximize the number of tasks while ensuring a provable response time-bound at each edge device. Extensive evaluations have been conducted using real-world city-wide vehicle trajectory datasets, achieving exceptional tracking performance with a real-time guarantee.more » « less
-
Traffic forecasting plays an important role in urban planning. Deep learning methods outperform traditional traffic flow forecasting models because of their ability to capture spatiotemporal characteristics of traffic conditions. However, these methods require high-quality historical traffic data, which can be both difficult to acquire and non-comprehensive, making it hard to predict traffic flows at the city scale. To resolve this problem, we implemented a deep learning method, SceneGCN, to forecast traffic speed at the city scale. The model involves two steps: firstly, scene features are extracted from Google Street View (GSV) images for each road segment using pretrained Resnet18 models. Then, the extracted features are entered into a graph convolutional neural network to predict traffic speed at different hours of the day. Our results show that the accuracy of the model can reach up to 86.5% and the Resnet18 model pretrained by Places365 is the best choice to extract scene features for traffic forecasting tasks. Finally, we conclude that the proposed model can predict traffic speed efficiently at the city scale and GSV images have the potential to capture information about human activities.more » « less
-
Route Planning Systems (RPS) are a core component of autonomous personal transport systems essential for safe and efficient navigation of dynamic urban environments with the support of edge-based smart city infrastructure, but they also raise concerns about user route privacy in the context of both privately-owned and commercial vehicles. Numerous high profile data breaches in recent years have fortunately motivated research on privacy-preserving RPS, but most of them are rendered impractical by greatly increased communication and processing overhead. We address this by proposing an approach called Hierarchical Privacy-Preserving Route Planning (HPRoP) which divides and distributes the route planning task across multiple levels, and protects locations along the entire route. This is done by combining Inertial Flow partitioning, Private Information Retrieval (PIR), and Edge Computing techniques with our novel route planning heuristic algorithm. Normalized metrics were also formulated to quantify the privacy of the source/destination points (endpoint location privacy) and the route itself (route privacy). Evaluation on a simulated road network showed that HPRoP reliably produces routes differing only by ≤20% in length from optimal shortest paths, with completion times within ∼ 25 seconds which is reasonable for a PIR-based approach. On top of this, more than half of the produced routes achieved near-optimal endpoint location privacy (∼ 1.0) and good route privacy (≥ 0.8).more » « less