skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Data-Driven Optimization of Public Transit Schedule
Bus transit systems are the backbone of public transportation in the United States. An important indicator of the quality of service in such infrastructures is on-time performance at stops, with published transit schedules playing an integral role governing the level of success of the service. However there are relatively few optimization architectures leveraging stochastic search that focus on optimizing bus timetables with the objective of maximizing probability of bus arrivals at timepoints with delays within desired on-time ranges. In addition to this, there is a lack of substantial research considering monthly and seasonal variations of delay patterns integrated with such optimization strategies. To address these, this paper makes the following contributions to the corpus of studies on transit on-time performance optimization: (a) an unsupervised clustering mechanism is presented which groups months with similar seasonal delay patterns, (b) the problem is formulated as a single-objective optimization task and a greedy algorithm, a genetic algorithm (GA) as well as a particle swarm optimization (PSO) algorithm are employed to solve it, (c) a detailed discussion on empirical results comparing the algorithms are provided and sensitivity analysis on hyper-parameters of the heuristics are presented along with execution times, which will help practitioners looking at similar problems. The analyses conducted are insightful in the local context of improving public transit scheduling in the Nashville metro region as well as informative from a global perspective as an elaborate case study which builds upon the growing corpus of empirical studies using nature-inspired approaches to transit schedule optimization  more » « less
Award ID(s):
1818901 1647015 1528799
PAR ID:
10166777
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Big Data Analytics
Issue:
2019
Page Range / eLocation ID:
265-284
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. COVID-19 has radically transformed urban travel behavior throughout the world. Agencies have had to provide adequate service while navigating a rapidly changing environment with reduced revenue. As COVID-19-related restrictions are lifted, transit agencies are concerned about their ability to adapt to changes in ridership behavior and public transit usage. To aid their becoming more adaptive to sudden or persistent shifts in ridership, we addressed three questions: To what degree has COVID-19 affected fixed-line public transit ridership and what is the relationship between reduced demand and -vehicle trips? How has COVID-19 changed ridership patterns and are they expected to persist after restrictions are lifted? Are there disparities in ridership changes across socioeconomic groups and mobility-impaired riders? Focusing on Nashville and Chattanooga, TN, ridership demand and vehicle trips were compared with anonymized mobile location data to study the relationship between mobility patterns and transit usage. Correlation analysis and multiple linear regression were used to investigate the relationship between socioeconomic indicators and changes in transit ridership, and an analysis of changes in paratransit demand before and during COVID-19. Ridership initially dropped by 66% and 65% over the first month of the pandemic for Nashville and Chattanooga, respectively. Cellular mobility patterns in Chattanooga indicated that foot traffic recovered to a greater degree than transit ridership between mid-April and the last week in June, 2020. Education-level had a statistically significant impact on changes in fixed-line bus transit, and the distribution of changes in demand for paratransit services were similar to those of fixed-line bus transit. 
    more » « less
  2. Effective public transit operations are one of the fundamental requirements for a modern community. Recently, a number of transit agencies have started integrating automated vehicle locators in their fleet, which provides a real-time estimate of the time of arrival. In this paper, we use the data collected over several months from one such transit system and show how this data can be potentially used to learn long term patterns of travel time. More specifically, we study the effect of weather and other factors such as traffic on the transit system delay. These models can later be used to understand the seasonal variations and to design adaptive and transient transit schedules. Towards this goal, we also propose an online architecture called DelayRadar. The novelty of DelayRadar lies in three aspects: (1) a data store that collects and integrates real-time and static data from multiple data sources, (2) a predictive statistical model that analyzes the data to make predictions on transit travel time, and (3) a decision making framework to develop an optimal transit schedule based on variable forecasts related to traffic, weather, and other impactful factors. This paper focuses on identifying the model with the best predictive accuracy to be used in DelayRadar. According to the preliminary study results, we are able to explain more than 70% of the variance in the bus travel time and we can make future travel predictions with an out-of-sample error of 4.8 minutes with information on the bus schedule, traffic, and weather. 
    more » « less
  3. Unpredictability is one of the top reasons that prevent people from using public transportation. To improve the on-time performance of transit systems, prior work focuses on updating schedule periodically in the long-term and providing arrival delay prediction in real-time. But when no real-time transit and traffic feed is available (e.g., one day ahead), there is a lack of effective contextual prediction mechanism that can give alerts of possible delay to commuters. In this paper, we propose a generic tool-chain that takes standard General Transit Feed Specification (GTFS) transit feeds and contextual information (recurring delay patterns before and after big events in the city and the contextual information such as scheduled events and forecasted weather conditions) as inputs and provides service alerts as output. Particularly, we utilize shared route segment networks and multi-task deep neural networks to solve the data sparsity and generalization issues. Experimental evaluation shows that the proposed toolchain is effective at predicting severe delay with a relatively high recall of 76% and F1 score of 55% 
    more » « less
  4. An effective real-time estimation of the travel time for vehicles, using AVL (Automatic Vehicle Locators) has added a new dimension to the smart city planning. In this paper, the authors used data collected over several months from a transit agency and show how this data can be potentially used to learn patterns of travel time during specially planned events like NFL (National Football League) games and music award ceremonies. The impact of NFL games along with consideration of other factors like weather, traffic condition, distance is discussed with their relative importance to the prediction of travel time. Statistical learning models are used to predict travel time and subsequently assess the cascading effects of delay. The model performance is determined based on its predictive accuracy according to the out-of-sample error. In addition, the models help identify the most significant variables that influence the delay in the transit system. In order to compare the actual and predicted travel time for days having special events, heat maps are generated showing the delay impacts in different time windows between two timepoint-segments in comparison to a non-game day. This work focuses on the prediction and visualization of the delay in the public transit system and the analysis of its cascading effects on the entire transportation network. According to the study results, the authors are able to explain more than 80% of the variance in the bus travel time at each segment and can make future travel predictions during planned events with an out-of-sample error of 2.0 minutes using information on the bus schedule, traffic, weather, and scheduled events. According to the variable importance analysis, traffic information is most significant in predicting the delay in the transit system. 
    more » « less
  5. The ability to accurately predict public transit ridership demand benefits passengers and transit agencies. Agencies will be able to reallocate buses to handle under or over-utilized bus routes, improving resource utilization, and passengers will be able to adjust and plan their schedules to avoid overcrowded buses and maintain a certain level of comfort. However, accurately predicting occupancy is a non-trivial task. Various reasons such as heterogeneity, evolving ridership patterns, exogenous events like weather, and other stochastic variables, make the task much more challenging. With the progress of big data, transit authorities now have access to real-time passenger occupancy information for their vehicles. The amount of data generated is staggering. While there is no shortage in data, it must still be cleaned, processed, augmented, and merged before any useful information can be generated. In this paper, we propose the use and fusion of data from multiple sources, cleaned, processed, and merged together, for use in training machine learning models to predict transit ridership. We use data that spans a 2-year period (2020-2022) incorporating transit, weather, traffic, and calendar data. The resulting data, which equates to 17 million observations, is used to train separate models for the trip and stop level prediction. We evaluate our approach on real-world transit data provided by the public transit agency of Nashville, TN. We demonstrate that the trip level model based on Xgboost and the stop level model based on LSTM outperform the baseline statistical model across the entire transit service day. 
    more » « less