skip to main content


Title: Viscous and elastic buoyancy stresses as drivers of ice-shelf calving
Abstract The Antarctic Ice Sheet loses mass via its ice shelves predominantly through two processes: basal melting and iceberg calving. Iceberg calving is episodic and infrequent, and not well parameterized in ice-sheet models. Here, we investigate the impact of hydrostatic forces on calving. We develop two-dimensional elastic and viscous numerical frameworks to model the ‘footloose’ calving mechanism. This mechanism is triggered by submerged ice protrusions at the ice front, which induce unbalanced buoyancy forces that can lead to fracturing. We compare the results to identify the different roles that viscous and elastic deformations play in setting the rate and magnitude of calving events. Our results show that, although the bending stresses in both frameworks share some characteristics, their differences have important implications for modeling the calving process. In particular, the elastic model predicts that maximum stresses arise farther from the ice front than in the viscous model, leading to larger calving events. We also find that the elastic model would likely lead to more frequent events than the viscous one. Our work provides a theoretical framework for the development of a better understanding of the physical processes that govern glacier and ice-shelf calving cycles.  more » « less
Award ID(s):
1744835
NSF-PAR ID:
10166976
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Glaciology
ISSN:
0022-1430
Page Range / eLocation ID:
1 to 15
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Inaccurate representations of iceberg calving from ice shelves are a large source of uncertainty in mass-loss projections from the Antarctic ice sheet. Here, we address this limitation by implementing and testing a continuum damage-mechanics model in a continental scale ice-sheet model. The damage-mechanics formulation, based on a linear stability analysis and subsequent long-wavelength approximation of crevasses that evolve in a viscous medium, links damage evolution to climate forcing and the large-scale stresses within an ice shelf. We incorporate this model into the BISICLES ice-sheet model and test it by applying it to idealized (1) ice tongues, for which we present analytical solutions and (2) buttressed ice-shelf geometries. Our simulations show that the model reproduces the large disparity in lengths of ice shelves with geometries and melt rates broadly similar to those of four Antarctic ice shelves: Erebus Glacier Tongue (length ~ 13 km), the unembayed portion of Drygalski Ice Tongue (~ 65 km), the Amery Ice Shelf (~ 350 km) and the Ross Ice Shelf (~ 500 km). These results demonstrate that our simple continuum model holds promise for constraining realistic ice-shelf extents in large-scale ice-sheet models in a computationally tractable manner. 
    more » « less
  2. null (Ed.)
    Abstract Iceberg calving strongly controls glacier mass loss, but the fracture processes leading to iceberg formation are poorly understood due to the stochastic nature of calving. The size distributions of icebergs produced during the calving process can yield information on the processes driving calving and also affect the timing, magnitude, and spatial distribution of ocean fresh water fluxes near glaciers and ice sheets. In this study, we apply fragmentation theory to describe key calving behaviours, based on observational and modelling data from Greenland and Antarctica. In both regions, iceberg calving is dominated by elastic-brittle fracture processes, where distributions contain both exponential and power law components describing large-scale uncorrelated fracture and correlated branching fracture, respectively. Other size distributions can also be observed. For Antarctic icebergs, distributions change from elastic-brittle type during ‘stable’ calving to one dominated by grinding or crushing during ice shelf disintegration events. In Greenland, we find that iceberg fragment size distributions evolve from an initial elastic-brittle type distribution near the calving front, into a steeper grinding/crushing-type power law along-fjord. These results provide an entirely new framework for understanding controls on iceberg calving and how calving may react to climate forcing. 
    more » « less
  3. Abstract

    Large tabular icebergs account for the majority of ice mass calved from Antarctic ice shelves, but are omitted from climate models. Specifically, these models do not account for iceberg breakup and as a result, modeled large icebergs could drift to low latitudes. Here, we develop a physically based parameterization of iceberg breakup based on the “footloose mechanism” suitable for climate models. This mechanism describes breakup of ice pieces from the iceberg edges triggered by buoyancy forces associated with a submerged ice foot fringing the iceberg. This foot develops as a result of ocean‐induced melt and erosion of the iceberg freeboard explicitly parameterized in the model. We then use an elastic beam model to determine when the foot is large enough to trigger calving, as well as the size of each child iceberg, which is controlled with the ice stiffness parameter. We test the breakup parameterization with a realistic large iceberg calving‐size distribution in the Geophysical Fluid Dynamics Laboratory OM4 ocean/sea‐ice model and obtain simulated iceberg trajectories and areas that closely match observations. Thus, the footloose mechanism appears to play a major role in iceberg decay that was previously unaccounted for in iceberg models. We also find that varying the size of the broken ice bits can influence the iceberg meltwater distribution more than physically realistic variations to the footloose decay rate.

     
    more » « less
  4. The loss or thinning of buttressing ice shelves and accompanying changes in grounding-zone stress balance are commonly implicated as the primary trigger for grounding-line retreat, such as that observed in Amundsen Sea outlet glaciers today. Ice-shelf thinning is mostly attributed to the presence of warm ocean waters beneath the shelves. However, climate model projections show that summer air temperatures could soon exceed the threshold for widespread meltwater production on ice-shelf surfaces. This has serious implications for their future stability, because they are vulnerable to water-induced flexural stresses and water-aided crevasse penetration, termed ‘hydrofracturing’. Once initiated, the rate of shelf loss through hydrofracturing can far exceed that caused by sub-surface melting, and could result in the complete loss of some buttressing ice shelves, with marine grounding lines suddenly becoming calving ice fronts. In places where those exposed ice fronts are thick (>900m) and crevassed, deviatoric stresses can exceed the strength of the ice and the cliff face will fail mechanically, leading to rapid calving like that seen in analogous settings such as Jakobshavn on Greenland. Here we explore the implications of hydrofacturing and subsequent ice-cliff collapse in a warming climate, by parameterizing these processes in a hybrid ice sheet-shelf model. Model sensitivities to meltwater production and to ice-cliff calving rate (a function of cliff height above the stress balance threshold triggering brittle failure) are calibrated to match modern observations of calving and thinning. We find the potential for major ice-sheet retreat if global mean temperature rises more than ~2ºC above preindustrial. In the model, Antarctic calving rates at thick ice fronts are not allowed to exceed those observed in Greenland today. This may be a conservative assumption, considering the very different spatial scales of Antarctic outlets, such as Thwaites. Nonetheless, simulations following a ‘worst case’ RCP8.5 scenario produce rates of sea-level rise measured in cm per year by the end of this century. Clearly, the potential for brittle processes to deliver ice to the ocean, in addition to viscous and basal processes, needs to be better constrained through more complete, physically based representations of calving. 
    more » « less
  5. Abstract

    Rapid retreat of the Larsen A and B ice shelves has provided important clues about the ice shelf destabilization processes. The Larsen C Ice Shelf, the largest remaining ice shelf on the Antarctic Peninsula, may also be vulnerable to future collapse in a warming climate. Here, we utilize multisource satellite images collected over 1963–2020 to derive multidecadal time series of ice front, flow velocities, and critical rift features over Larsen C, with the aim of understanding the controls on its retreat. We complement these observations with modeling experiments using the Ice‐sheet and Sea‐level System Model to examine how front geometry conditions and mechanical weakening due to rifts affect ice shelf dynamics. Over the past six decades, Larsen C lost over 20% of its area, dominated by rift‐induced tabular iceberg calving. The Bawden Ice Rise and Gipps Ice Rise are critical areas for rift formation, through their impact on the longitudinal deviatoric stress field. Mechanical weakening around Gipps Ice Rise is found to be an important control on localized flow acceleration and the propagation of two rifts that caused a major calving event in 2017. Capturing the time‐varying effects of rifts on ice rigidity in ice shelf models is essential for making realistic predictions of ice shelf flow dynamics and instability. In the context of the Larsen A and Larsen B collapses, we infer a chronology of destabilization processes for embayment‐confined ice shelves, which provides a useful framework for understanding the historical and future destabilization of Antarctic ice shelves.

     
    more » « less