skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Ferro-electret nanogenerators as flexible microphones
Research on flexible transducers capable of sensing acoustic signals has become increasingly important due to its implications in human interfaces with wearable electronics. The proof-of-concept for a flexible microphone/loudspeaker based on the use of a ferro-electret nanogenerator (FENG) was recently presented. Following that, this work characterizes FENG-based microphones, showing the sensitivity of a 5 cm x 5 cm, single layer FENG to be ∼ .015 mV/Pa. The variance of sensitivity based on surface area is also studied and presented. Polar patterns or directivity is emphasized in this work by studying how various shapes (i.e. flat, concave and convex) affect the output. The spectral information of the output of FENGbased microphone to typical voice input is compared with a commercially available microphone  more » « less
Award ID(s):
1854750
PAR ID:
10167458
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
IEEE Sensors Conference
Page Range / eLocation ID:
1 to 4
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present a MEMS microphone that converts the mechanical motion of a diaphragm, generated by acoustic waves, to an electrical output voltage by capacitive fingers. The sensitivity of a microphone is one of the most important properties of its design. The sensitivity is proportional to the applied bias voltage. However, it is limited by the pull-in voltage, which causes the parallel plates to collapse and prevents the device from functioning properly. The presented MEMS microphone is biased by repulsive force instead of attractive force to avoid pull-in instability. A unit module of the repulsive force sensor consists of a grounded moving finger directly above a grounded fixed finger placed between two horizontally seperated voltage fixed fingers. The moving finger experiences an asymmetric electrostatic field that generates repulsive force that pushes it away from the substrate. Because of the repulsive nature of the force, the applied voltage can be increased for better sensitivity without the risk of pull-in failure. To date, the repulsive force has been used to engage a MEMS actuator such as a micro-mirror, but we now apply it for a capacitive sensor. Using the repulsive force can revolutionize capacitive sensors in many applications because they will achieve better sensitivity. Our simulations show that the repulsive force allows us to improve the sensitivity by increasing the bias voltage. The applied voltage and the back volume of a standard microphone have stiffening effects that significantly reduce its sensitivity. We find that proper design of the back volume and capacitive fingers yield promising results without pull-in instability. 
    more » « less
  2. Fabrication and acoustic performance of a microelectromechanical systems (MEMS) microphone are presented. The microphone utilizes an unusual electrostatic sensing scheme that causes the sensing electrode to move away, or levitate from the biasing electrode as the bias voltage is applied. This approach differs from existing electrostatic sensors and completely avoids the usual collapse, or pull-in instability. In this study, our goal is to fabricate a MEMS microphone whose sensitivity could be improved simply by increasing the bias voltage, without suffering from pull-in instability. The microphone is tested in our anechoic chamber and a read-out circuit is used to obtain electrical signals in response to sound pressure at various bias voltages. Experimental results show that the sensitivity increases approximately linearly with bias voltage for bias voltages from 40 volts to 100 volts. The ability to design electrostatic sensors without concerns about pull-in failure can enable a wide-range of promising sensor designs. 
    more » « less
  3. Abstract Targeted light delivery into biological tissue is needed in applications such as optogenetic stimulation of the brain and in vivo functional or structural imaging of tissue. These applications require very compact, soft, and flexible implants that minimize damage to the tissue. Here, we demonstrate a novel implantable photonic platform based on a high-density, flexible array of ultracompact (30 μm × 5 μm), low-loss (3.2 dB/cm atλ = 680 nm, 4.1 dB/cm atλ = 633 nm, 4.9 dB/cm atλ = 532 nm, 6.1 dB/cm atλ = 450 nm) optical waveguides composed of biocompatible polymers Parylene C and polydimethylsiloxane (PDMS). This photonic platform features unique embedded input/output micromirrors that redirect light from the waveguides perpendicularly to the surface of the array for localized, patterned illumination in tissue. This architecture enables the design of a fully flexible, compact integrated photonic system for applications such as in vivo chronic optogenetic stimulation of brain activity. 
    more » « less
  4. The self‐powered and autonomous sensors are incredibly important in advanced engineering, especially defence science. The increasing necessity of simple and smart electronics requires to be sustainably flexible, wearable, and waterproof. Triboelectricity has been a widely used mechanism for motion sensing nowadays. Almost all devices based on triboelectricity require contact between two surfaces. Herein, a touchless triboelectric motion sensor for human motion sensing and movement monitoring is developed. The device was primarily fabricated using simple latex (cis‐1,4‐polyisoprene) structures and copper (electrode materials), which make it a very cost‐effective device for sensory applications. The device is tested with specimens of different areas and heights in motion. The maximum output of the device is noted as 12 V at a specimen height of 5 cm. Further different types of human motions are applied in front of the device to ensure low energy sensitivity using triboelectric phenomena. The lightweight smart device precisely provides significant output signals for each movement of the human body which makes the device a prospective medium for motion sensing and movement monitoring which can be applied in the fields of security, energy, and medicine. 
    more » « less
  5. null (Ed.)
    Cellulose-based materials have gained increasing attention for the development of low cost, eco-friendly technologies, and more recently, as functional materials in triboelectric nanogenerators (TENGs). However, the low output performance of cellulose-based TENGs severely restricts their versatility and employment in emerging smart building and smart city applications. Here, we report a high output performance of a commercial cellulosic material-based energy harvesting floor (CEHF). Benefiting from the significant difference in the triboelectric properties between weighing and nitrocellulose papers, high surface roughness achieved by a newly developed mechanical exfoliation method, and large overall contact area via a multilayered device structure, the CEHF (25 cm × 15 cm × 1.2 cm) exhibits excellent output performance with a maximum output voltage, current, and power peak values of 360 V, 250 μA, and 5 mW, respectively. It can be directly installed or integrated with regular flooring products to effectively convert human body movements into electricity and shows good durability and stability. Moreover, a wireless transmission sensing system that can produce a 1:1 footstep-to-signal (transmitted and received) ratio is instantaneously powered by a TENG based entirely on cellulosic materials for the first time. This work provides a feasible and effective way to utilize commercial cellulosic materials to construct self-powered wireless transmission systems for real-time sensing applications. 
    more » « less