- Award ID(s):
- 1658952
- PAR ID:
- 10167500
- Date Published:
- Journal Name:
- Tax notes
- ISSN:
- 0715-8556
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
null (Ed.)The development of professional engineers for the workforce is one of the aims of engineering education, which benefits from the complementary efforts of engineering students, faculty, and employers. Typically, current research on engineering competencies needed for practice in the workplace is focused on the experiences and perspectives of practicing engineers. This study aimed to build on this work by including the perspectives and beliefs of engineering faculty about preparing engineering students, as well as the perspectives and beliefs of engineering students about preparing for the workplace. The overall question of the research was, “What and how do engineering students learn about working in the energy sector?” Additional questions asked practicing engineers, “What is important to learn about your work and how did you learn what was important when you started in this industry? For engineering faculty, we asked, “What is important for students to learn as they prepare for work as professionals in the energy industry?” We anticipated that the findings of triangulating these three samples would help us better understand the nature of the preparation of engineering students for work by exploring the connections and disconnections between engineering education in school and engineering practice in the workplace. The aim was to map out the complex ecosystem of professional learning in the context of engineering education and practice. The core concept framing this study is the development of competence for engineering practice—including the education of students in the context of higher education and the practical learning of newly hired engineers on the job. Initial findings of the work-in-progress describe the nature of instruction and learning in higher education, learning in the workplace, along with comparisons and contrasts between the two. As of this point, we have initially mapped the learning ecosystem in the workplace based on in-depth, qualitative interviews with 12 newly hired engineers in the target energy company. In addition, we are analyzing interviews with two managers in the company and three other experienced leaders in the energy industry (this sample is currently in process and will include interviews with more participants). Currently, we are analyzing and mapping the learning and experiences of students in their studies of energy engineering and the instructional goals of engineering faculty teaching and mentoring these students. The map of the higher education ecosystem will connect with the workplace ecosystem to portray a more longitudinal map of the learning and development of professional competence of engineering students preparing for their career in the energy sector. The findings of the analysis of the workplace emphasized the importance of the social and relational systems in the workplace, while very preliminary indications from the educational context (students and faculty) indicate initial awareness of the social context of energy practice and policy. There are also indications of the nature of important cultural differences between higher education and industry. We continue to collect data and work on the analysis of data with the aim of mapping out the larger learning and experience ecosystem that leading to professional competence.more » « less
-
Abstract Pollen, the microgametophyte of seed plants, has an important role in plant reproduction and, therefore, evolution. Pollen is variable in, for example, size, shape, aperture number; these features are particularly diverse in some plant taxa and can be diagnostic. In one family, Boraginaceae, the range of pollen diversity suggests the potential utility of this family as a model for integrative studies of pollen development, evolution and molecular biology. In the present study, a comprehensive survey of the diversity and evolution of pollen from 538 species belonging to 72 genera was made using data from the literature and additional scanning electron microscopy examination. Shifts in diversification rates and the evolution of various quantitative characters were detected, and the results revealed remarkable differences in size, shape and number of apertures. The pollen of one subfamily, Boraginoideae, is larger than that in Cynoglossoideae. The diversity of pollen shapes and aperture numbers in one tribe, Lithospermeae, is greater than that in the other tribes. Ancestral pollen for the family was resolved as small, prolate grains that bear three apertures and are iso‐aperturate. Of all the tribes, the greatest number of changes in pollen size and aperture number were observed in Lithospermeae and Boragineae, and the number of apertures was found to be stable throughout all tribes of Cynoglossoideae. In addition, the present study showed that diversification of Boraginaceae cannot be assigned to a single factor, such as pollen size, and the increased rate of diversification for species‐rich groups (e.g.
Cynoglossum ) is not correlated with pollen size or shape evolution. The palynological data and patterns of character evolution presented in the study provide better resolution of the roles of geographical and ecological factors in the diversity and evolution of pollen grains of Boraginaceae, and provide suggestions for future palynological research across the family. -
null (Ed.)Our social relationships determine our health and well-being. In rodent models, there is now strong support for the rewarding properties of aggressive or assertive behaviors to be critical for the expression and development of adaptive social relationships, buffering from stress and protecting from the development of psychiatric disorders such as depression. However, due to the false belief that aggression is not a part of the normal repertoire of social behaviors displayed by females, almost nothing is known about the neural mechanisms mediating the rewarding properties of aggression in half the population. In the following study, using Syrian hamsters as a well-validated and translational model of female aggression, we investigated the effects of aggressive experience on the expression of markers of postsynaptic structure (PSD-95, Caskin I) and excitatory synaptic transmission (GluA1, GluA2, GluA4, NR2A, NR2B, mGluR1a, and mGluR5) in the nucleus accumbens (NAc), caudate putamen and prefrontal cortex. Aggressive experience resulted in an increase in PSD-95, GluA1 and the dimer form of mGluR5 specifically in the NAc 24 h following aggressive experience. There was also an increase in the dimer form of mGluR1a 1 week following aggressive experience. Aggressive experience also resulted in an increase in the strength of the association between these postsynaptic proteins and glutamate receptors, supporting a common mechanism of action. In addition, 1 week following aggressive experience there was a positive correlation between the monomer of mGluR5 and multiple AMPAR and NMDAR subunits. In conclusion, we provide evidence that aggressive experience in females results in an increase in the expression of postsynaptic density, AMPARs and group I metabotropic glutamate receptors, and an increase in the strength of the association between postsynaptic proteins and glutamate receptors. This suggests that aggressive experience may result in an increase in excitatory synaptic transmission in the NAc, potentially encoding the rewarding and behavioral effects of aggressive interactions.more » « less
-
The last years have witnessed remarkable advances in our understanding of the emergence and consequences of topological constraints in biological and soft matter. Examples are abundant in relation to (bio)polymeric systems and range from the characterization of knots in single polymers and proteins to that of whole chromosomes and polymer melts. At the same time, considerable advances have been made in the description of the interplay between topological and physical properties in complex fluids, with the development of techniques that now allow researchers to control the formation of and interaction between defects in diverse classes of liquid crystals. Thanks to technological progress and the integration of experiments with increasingly sophisticated numerical simulations, topological biological and soft matter is a vibrant area of research attracting scientists from a broad range of disciplines. However, owing to the high degree of specialization of modern science, many results have remained confined to their own particular fields, with different jargon making it difficult for researchers to share ideas and work together towards a comprehensive view of the diverse phenomena at play. Compelled by these motivations, here we present a comprehensive overview of topological effects in systems ranging from DNA and genome organization to entangled proteins, polymeric materials, liquid crystals, and theoretical physics, with the intention of reducing the barriers between different fields of soft matter and biophysics. Particular care has been taken in providing a coherent formal introduction to the topological properties of polymers and of continuum materials and in highlighting the underlying common aspects concerning the emergence, characterization, and effects of topological objects in different systems. The second half of the review is dedicated to the presentation of the latest results in selected problems, specifically, the effects of topological constraints on the viscoelastic properties of polymeric materials; their relation with genome organization; a discussion on the emergence and possible effects of knots and other entanglements in proteins; the emergence and effects of topological defects and solitons in complex fluids. This review is dedicated to the memory of Marek Cieplak.more » « less
-
Carbon is one of the principal candidates for the light elements in Earth's core. The content and chemical bonding environments of carbon in the core are essential for understanding the nature and dynamics of the core. This chapter focuses on mineral physics investigations of density and sound velocities of candidate iron carbides and assesses the role of carbon in accounting for the core density deficit and sound velocity discrepancy. It then reviews cosmochemical and geochemical constraints on carbon in the deep Earth from the compositions of meteorite and terrestrial samples, followed by experimental results on the solubility of carbon in Fe-Ni liquids and the processes of transporting carbon to the core during the coreformation differentiation in the early history of Earth. Finally, the chapter discusses the carbon inventory in Earth's core and the implications for the deep carbon cycle in Earth's interior.more » « less