skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fingerprinting Cloud FPGA Infrastructures
In recent years, multiple public cloud FPGA providers have emerged,increasing interest in FPGA acceleration of cryptographic, bioinformatic, financial, and machine learning algorithms. To help understand the security of the cloud FPGA infrastructures, this paper focuses on a fundamental question of understanding what an adversary can learn about the cloud FPGA infrastructure itself, without attacking it or damaging it. In particular, this work explores how unique features of FPGAs can be exploited to instantiate Physical Unclonable Functions (PUFs) that can distinguish between otherwise-identical FPGA boards. This paper specifically introduces the first method for identifying cloud FPGA instances by extracting a unique and stable FPGA fingerprint based on PUFs measured from the FPGA boards’ DRAM modules. Experiments conducted on the Amazon Web Services (AWS) cloud reveal the probability of renting the same physical board more than once. Moreover, the experimental results show that hardware is not shared amongf1.2xlarge,f1.4xlarge, andf1.16xlargeinstance types. As the approach used does not violate any restrictions currently placed by Amazon,this paper also presents a set of defense mechanisms that can be added to existing countermeasures to mitigate users’ attempts to fingerprint cloud FPGA infrastructures.  more » « less
Award ID(s):
1901901 1651945
PAR ID:
10167509
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
International Symposium on Field-Programmable Gate Arrays
Page Range / eLocation ID:
58 to 64
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Public cloud infrastructures allow for easy, on-demand access to FPGA resources. However, the low-level, direct access to the FPGA hardware exposes the infrastructure providers to new types of attacks. Prior work has shown that it is possible to uniquely identify the underlying hardware by creating fingerprints of the different FPGA instances that users rent from a cloud provider, but such work was not able to actually map the cloud FPGA infrastructure itself. Meanwhile, this paper demonstrates that it is possible to reverse-engineer the co-location of FPGA boards inside a cloud FPGA server using PCIe contention. Specifically, this work deduces the Non-Uniform Memory Access (NUMA) locality of FPGA boards within a server by analyzing their mutual PCIe contention during simultaneous use of the PCIe bus. In addition, experiments conducted in data centers located in several geographic regions and repeated at different times are used to calculate the probability that cloud providers allocate FPGA boards co-located in the same server to a user. This paper thus shows that it is possible to map cloud FPGA infrastructures, and learn how FPGA instances are physically co-located within a server. Consequently, this paper also highlights the importance of mitigating these novel avenues for reverse-engineering and mapping of cloud FPGA setups, as they can reveal insights about the cloud infrastructure itself, or assist other single- and multi-tenant attacks. 
    more » « less
  2. Field-Programmable Gate Arrays (FPGAs) are ver-satile, reconfigurable integrated circuits that can be used ashardware accelerators to process highly-sensitive data. Leakingthis data and associated cryptographic keys, however, can un-dermine a system’s security. To prevent potentially unintentionalinteractions that could break separation of privilege betweendifferent data center tenants, FPGAs in cloud environments arecurrently dedicated on a per-user basis. Nevertheless, while theFPGAs themselves are not shared among different users, otherparts of the data center infrastructure are. This paper specificallyshows for the first time that powering FPGAs, CPUs, and GPUsthrough the same power supply unit (PSU) can be exploitedin FPGA-to-FPGA, CPU-to-FPGA, and GPU-to-FPGA covertchannels between independent boards. These covert channelscan operate remotely, without the need for physical access to,or modifications of, the boards. To demonstrate the attacks, thispaper uses a novel combination of “sensing” and “stressing” ringoscillators as receivers on the sink FPGA. Further, ring oscillatorsare used as transmitters on the source FPGA. The transmittingand receiving circuits are used to determine the presence of theleakage on off-the-shelf Xilinx boards containing Artix 7 andKintex 7 FPGA chips. Experiments are conducted with PSUs bytwo vendors, as well as CPUs and GPUs of different generations.Moreover, different sizes and types of ring oscillators are alsotested. In addition, this work discusses potential countermeasuresto mitigate the impact of the cross-board leakage. The results ofthis paper highlight the dangers of shared power supply unitsin local and cloud FPGAs, and therefore a fundamental need tore-think FPGA security for shared infrastructures. 
    more » « less
  3. With increasing interest in Cloud FPGAs, such as Amazon's EC2 F1 instances or Microsoft's Azure with Catapult servers, FPGAs in cloud computing infrastructures can become targets for information leakages via convert channel communication. Cloud FPGAs leverage temporal sharing of the FPGA resources between users. This paper shows that heat generated by one user can be observed by another user who later uses the same FPGA. The covert data transfer can be achieved through simple on-off keying (OOK) and use of multiple FPGA boards in parallel significantly improves data throughput. The new temporal thermal covert channel is demonstrated on Microsoft's Catapult servers with FPGAs running remotely in the Texas Advanced Computing Center (TACC). A number of defenses against the new temporal thermal covert channel are presented at the end of the paper. 
    more » « less
  4. null (Ed.)
    Physical Unclonable Functions (PUFs) and True Random Number Generators (TRNGs) are common primitives that can increase the security of user logic on FPGAs. They are typically constructed using Ring Oscillators (ROs). However, PUF and TRNG primitives are not currently available on Cloud FPGAs as some commercial Cloud FPGA providers prohibit deploying ROs implemented using Lookup Tables (LUTs). To aid in bringing RO-based PUFs and TRNGs to commercial Cloud FPGAs, this work implements and evaluates PUFs and TRNGs built using ROs that incorporate latches and flip-flops. The primitives are tested on Amazon's commercial F1 Cloud FPGAs. The designs are the first constructive uses of ROs in Cloud FPGAs and are available under an open-source license. 
    more » « less
  5. null (Ed.)
    To lower cost and increase the utilization of Cloud Field-Programmable Gate Arrays (FPGAs), researchers have recently been exploring the concept of multi-tenant FPGAs, where multiple independent users simultaneously share the same remote FPGA. Despite its benefits, multi-tenancy opens up the possibility of malicious users co-locating on the same FPGA as a victim user, and extracting sensitive information. This issue becomes especially serious when the user is running a machine learning algorithm that is processing sensitive or private information. To demonstrate the dangers, this paper presents a remote, power-based side-channel attack on a deep neural network accelerator running in a variety of Xilinx FPGAs and also on Cloud FPGAs using Amazon Web Services (AWS) F1 instances. This work in particular shows how to remotely obtain voltage estimates as a deep neural network inference circuit executes, and how the information can be used to recover the inputs to the neural network. The attack is demonstrated with a binarized convolutional neural network used to recognize handwriting images from the MNIST handwritten digit database. With the use of precise time-to-digital converters for remote voltage estimation, the MNIST inputs can be successfully recovered with a maximum normalized cross-correlation of 79% between the input image and the recovered image on local FPGA boards and 72% on AWS F1 instances. The attack requires no physical access nor modifications to the FPGA hardware. 
    more » « less