skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Laramide evolution of the San Juan Basin, New Mexico and Colorado: Paleocurrent and detrital-sanidine age constraints from the Paleocene Nacimiento and Animas formations
Understanding the tectonic and landscape evolution of the Colorado Plateau−southern Rocky Mountains area requires knowledge of the Laramide stratigraphic development of the San Juan Basin. Laramide sediment-transport vectors within the San Juan Basin are relatively well understood, except for those of the Nacimiento and Animas formations. Throughout most of the San Juan Basin of northwestern New Mexico and adjacent Colorado, these Paleocene units are mudstone-dominated fluvial successions intercalated between the lowermost Paleocene Kimbeto Member of the Ojo Alamo Sandstone and the basal strata of the lower Eocene San Jose Formation, both sandstone-dominated fluvial deposits. For the Nacimiento and Animas formations, we present a new lithostratigraphy that provides a basis for basin-scale interpretation of the Paleocene fluvial architecture using facies analysis, paleocurrent measurements, and 40Ar/ 39Ar sanidine age data. In contrast to the dominantly southerly or southeasterly paleoflow exhibited by the underlying Kimbeto Member and the overlying San Jose Formation, the Nacimiento and Animas formations exhibit evidence of diverse paleoflow. In the southern and western part of the basin during the Puercan, the lower part of the Nacimiento Formation was deposited by south- or southeast-flowing streams, similar to those of the underlying Kimbeto Member. This pattern of southeasterly paleoflow continued during the Torrejonian in the western part of the basin, within a southeast-prograding distributive fluvial system. By Torrejonian time, a major east-northeast–flowing fluvial system, herein termed the Tsosie paleoriver, had entered the southwestern part of the basin, and a switch to northerly paleoflow had occurred in the southern San Juan Basin. The reversal of paleoslope in the southern part of the San Juan Basin probably resulted from rapid subsidence in the northeast part of the basin during the early Paleocene. Continued Tiffanian-age southeastward progradation of the distributive fluvial system that headed in the western part of the basin pushed the Tsosie paleoriver beyond the present outcrop extent of the basin. In the eastern and northern parts of the San Juan Basin, paleoflow was generally toward the south throughout deposition of the Nacimiento and the Animas formations. An important exception is a newly discovered paleodrainage that exited the northeastern part of the basin, ∼15 km south of Dulce, New Mexico. There, an ∼130-m-thick Paleocene sandstone (herein informally termed the Wirt member of the Animas Formation) records a major east-flowing paleoriver system that aggraded within a broad paleovalley carved deeply into the Upper Cretaceous Lewis Shale. 40Ar/ 39Ar dating of detrital sanidine documents a maximum depositional age of 65.58 ± 0.10 Ma for the Wirt member. The detrital sanidine grains are indistinguishable in age and K/Ca values from sanidines of the Horseshoe ash (65.49 ± 0.06 Ma), which is exposed 10.5 m above the base of the Nacimiento Formation in the southwestern part of the basin. The Wirt member may represent the deposits of the Tsosie paleoriver where it exited eastward from the basin. Our study shows that the evolution of Paleocene fluvial systems in the San Juan Basin was complex and primarily responded to variations in subsidence-related sedimentary accommodation within the basin.  more » « less
Award ID(s):
1654949
PAR ID:
10167529
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Geosphere
Volume:
15
Issue:
5
ISSN:
1553-040X
Page Range / eLocation ID:
1598-1616
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Abstract Crooked Ridge and White Mesa in northeastern Arizona (southwestern United States) preserve, as inverted topography, a 57-km-long abandoned alluvial system near the present drainage divide between the Colorado, San Juan, and Little Colorado Rivers. The pathway of this paleoriver, flowing southwest toward eastern Grand Canyon, has led to provocative alternative models for its potential importance in carving Grand Canyon. The ∼50-m-thick White Mesa alluvium is the only datable record of this paleoriver system. We present new 40Ar/39Ar sanidine dating that confirms a ca. 2 Ma maximum depositional age for White Mesa alluvium, supported by a large mode (n = 42) of dates from 2.06 to 1.76 Ma. Older grain modes show abundant 37–23 Ma grains mostly derived ultimately from the San Juan Mountains, as is also documented by rare volcanic and basement pebbles in the White Mesa alluvium. A tuff with an age of 1.07 ± 0.05 Ma is inset below, and hence provides a younger age bracket for the White Mesa alluvium. Newly dated remnant deposits on Black Mesa contain similar 37–23 Ma grains and exotic pebbles, plus a large mode (n = 71) of 9.052 ± 0.003 Ma sanidine. These deposits could be part of the White Mesa alluvium without any Pleistocene grains, but new detrital sanidine data from the upper Bidahochi Formation near Ganado, Arizona, have similar maximum depositional ages of 11.0–6.1 Ma and show similar 40–20 Ma San Juan Mountains–derived sanidine. Thus, we tentatively interpret the <9 Ma Black Mesa deposit to be a remnant of an 11–6 Ma Bidahochi alluvial system derived from the now-eroded southwestern fringe of the San Juan Mountains. This alluvial fringe is the probable source for reworking of 40–20 Ma detrital sanidine and exotic clasts into Oligocene Chuska Sandstone, Miocene Bidahochi Formation, and ultimately into the <2 Ma White Mesa alluvium. The <2 Ma age of the White Mesa alluvium does not support models that the Crooked Ridge paleoriver originated as a late Oligocene to Miocene San Juan River that ultimately carved across the Kaibab uplift. Instead, we interpret the Crooked Ridge paleoriver as a 1.9–1.1 Ma tributary to the Little Colorado River, analogous to modern-day Moenkopi Wash. We reject the “young sediment in old paleovalley” hypothesis based on mapping, stratigraphic, and geomorphic constraints. Deep exhumation and beheading by tributaries of the San Juan and Colorado Rivers caused the Crooked Ridge paleotributary to be abandoned between 1.9 and 1.1 Ma. Thermochronologic data also provide no evidence for, and pose substantial difficulties with, the hypothesis for an earlier (Oligocene–Miocene) Colorado–San Juan paleoriver system that flowed along the Crooked Ridge pathway and carved across the Kaibab uplift. 
    more » « less
  2. 40Ar/39Ar detrital sanidine (DS) dating of river terraces provides new insights into the evolution and bedrock incision history of the San Juan River, a major tributary of the Colorado River, USA, at the million-year time scale. We dated terrace flights from the San Juan−Colorado River confluence to the San Juan Rocky Mountains. We report >5700 40Ar/ 39Ar dates on single DS grains from axial river facies within several meters above the straths of 30 individual terraces; these yielded ∼2.5% young (<2 Ma) grains that constrain maximum depositional ages (MDAs) and minimum incision rates. The most common young grains were from known caldera eruptions: 0.63 Ma grains derived from the Yellowstone Lava Creek B eruption, and 1.23 Ma and 1.62 Ma grains derived from two Jemez Mountains eruptions in New Mexico. Agreement of a DS-derived MDA age with a refined cosmogenic burial age from Bluff, Utah, indicates that the DS MDA closely approximates the true depositional age in some cases. In a given reach, terraces with ca. 0.6 Ma grains are commonly about half as high above the river as those with ca. 1.2 Ma grains, suggesting that the formation of the terrace flights likely tracks near-steady bedrock incision over the past 1.2 Ma. Longitudinal profile analysis of the San Juan River system shows variation in area-normalized along-stream gradients: a steeper (ksn = 150) reach near the confluence with the Colorado River, a shallower gradient (ksn = 70) in the central Colorado Plateau, and steeper (ksn = 150) channels in the upper Animas River basin. These reaches all show steady bedrock incision, but rates vary by >100 m/Ma, with 247 m/Ma at the San Juan−Colorado River confluence, 120−164 m/Ma across the core of the Colorado Plateau, and 263 m/Ma in the upper Animas River area of the San Juan Mountains. The combined dataset suggests that the San Juan River system is actively adjusting to base-level fall at the Colorado River confluence and to the uplift of the San Juan Mountains headwaters relative to the core of the Colorado Plateau. These fluvial adjustments are attributed to ongoing mantle-driven differential epeirogenic uplift that is shaping the San Juan River system as well as rivers and landscapes elsewhere in the western United States. 
    more » « less
  3. The Green River Formation of Wyoming, USA, is host to the world’s largest known lacustrine sodium carbonate deposits, which accumulated in a closed basin during the early Eocene greenhouse. Alkaline brines are hypothesized to have been delivered to ancient Gosiute Lake by the Aspen paleoriver that flowed from the Colorado Mineral Belt. To precisely trace fluvial provenance in the resulting deposits, we conducted X-ray fluorescence analyses and petrographic studies across a suite of well-dated sandstone marker beds of the Wilkins Peak Member of the Green River Formation. Principal component analysis reveals strong correlation among elemental abundances, grain composition, and sedimentary lithofacies. To isolate a detrital signal, elements least affected by authigenic minerals, weathering, and other processes were included in a principal component analysis, the results of which are consistent with petrographic sandstone modes and detrital zircon chronofacies of the basin. Sandstone marker beds formed during eccentricity-paced lacustrine lowstands and record the migration of fluvial distributary channel networks from multiple catchments around a migrating depocenter, including two major paleorivers. The depositional topography of these convergent fluvial fans would have inversely defined bathymetric lows during subsequent phases of lacustrine inundation, locations where trona could accumulate below a thermocline. Provenance mapping verifies fluvial connectivity to the Aspen paleoriver and to sources of alkalinity in the Colorado Mineral Belt across Wilkins Peak Member deposition, and shows that the greatest volumes of sediment were delivered from the Aspen paleoriver during deposition of marker beds A, B, D, and I, each of which were deposited coincident with prominent “hyperthermal” isotopic excursions documented in oceanic cores. 
    more » « less
  4. None (Ed.)
    Abstract The Green River Formation of Wyoming, USA, is host to the world’s largest known lacustrine sodium carbonate deposits, which accumulated in a closed basin during the early Eocene greenhouse. Alkaline brines are hypothesized to have been delivered to ancient Gosiute Lake by the Aspen paleoriver that flowed from the Colorado Mineral Belt. To precisely trace fluvial provenance in the resulting deposits, we conducted X-ray fluorescence analyses and petrographic studies across a suite of well-dated sandstone marker beds of the Wilkins Peak Member of the Green River Formation. Principal component analysis reveals strong correlation among elemental abundances, grain composition, and sedimentary lithofacies. To isolate a detrital signal, elements least affected by authigenic minerals, weathering, and other processes were included in a principal component analysis, the results of which are consistent with petrographic sandstone modes and detrital zircon chronofacies of the basin. Sandstone marker beds formed during eccentricity-paced lacustrine lowstands and record the migration of fluvial distributary channel networks from multiple catchments around a migrating depocenter, including two major paleorivers. The depositional topography of these convergent fluvial fans would have inversely defined bathymetric lows during subsequent phases of lacustrine inundation, locations where trona could accumulate below a thermocline. Provenance mapping verifies fluvial connectivity to the Aspen paleoriver and to sources of alkalinity in the Colorado Mineral Belt across Wilkins Peak Member deposition, and shows that the greatest volumes of sediment were delivered from the Aspen paleoriver during deposition of marker beds A, B, D, and I, each of which were deposited coincident with prominent “hyperthermal” isotopic excursions documented in oceanic cores. 
    more » « less
  5. The Calingasta-Uspallata Basin preserves a near continuous sequence of glaciomarine deposition from the middle to late Carboniferous, represented by five separate formations. Correlation between these formations have been achieved using index marine invertebrates, which also provides some implications for max-depositional ages. However, no isotopic dating analyses have been sought in this basin to further constrain the age of deposition or provide a source of provenance for sediments. The San Eduardo formation near the El Leoncito Astronomical Complex, San Juan Province, Argentina, was deposited within the Calingasta—Upsallata Basin on the western margin of the Proto-precordillera during the late Mississippian to early Pennsylvanian. This succession preserves a complete sequence of proximal glaciomarine, nearshore, and fluvial systems deposited at the beginning of the late Paleozoic ice age. Samples were collected from various stages throughout the sequence for detrital zircon U-Pb geochronology to determine sediment provenance as a way of isolating different glacier sources. Results indicate multiple stages of glaciation, with at least three distinct source areas. The lowermost stage includes locally sourced basement and recycled underlying Silurian, represented by similar Famatinian (500-460 mya) and Grenville peaks (1250-1000 mya) peaks, where the Grenville source likely originating from the Western Sierras Pampeans, which would represent a breaching of the Proto-precordillera from the east. The middle stage shows a population distinct unto itself, with a peak during the Mississippian (330-360 mya). A volcanic island arc was situated along the Andean margin during the late Paleozoic, likely resulting in the influx of Carboniferous aged volcanic sediments. The lower most stage shows relations based on K-S results to formations within the Paganzo basin to the northeast, likely serving as the outwash of these distant glaciers through braided fluvial systems. This study will expand upon current chronologic knowledge within the Calingasta-Uspallata basin and will be supported by sandstone petrology and mineralogic composition, pebble counts and composition of dropstones. 
    more » « less