skip to main content


Title: InfiniCache: Exploiting Ephemeral Serverless Functions to Build a Cost-Effective Memory Cache
Internet-scale web applications are becoming increasingly storage-intensive and rely heavily on in-memory object caching to attain required I/O performance. We argue that the emerging serverless computing paradigm provides a well-suited, cost-effective platform for object caching. We present InfiniCache, a first-of-its-kind in-memory object caching system that is completely built and deployed atop ephemeral serverless functions. InfiniCache exploits and orchestrates serverless functions' memory resources to enable elastic pay-per-use caching. InfiniCache's design combines erasure coding, intelligent billed duration control, and an efficient data backup mechanism to maximize data availability and cost-effectiveness while balancing the risk of losing cached state and performance. We implement InfiniCache on AWS Lambda and show that it: (1) achieves 31 – 96× tenant-side cost savings compared to AWS ElastiCache for a large-object-only production workload, (2) can effectively provide 95.4% data availability for each one hour window, and (3) enables comparative performance seen in a typical in-memory cache.  more » « less
Award ID(s):
1919075
NSF-PAR ID:
10167834
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
18th USENIX Conference on File and Storage Technologies
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Cloud object storage such as AWS S3 is cost-effective and highly elastic but relatively slow, while high-performance cloud storage such as AWS ElastiCache is expensive and provides limited elasticity. We present a new cloud storage service called ServerlessMemory, which stores data using the memory of serverless functions. ServerlessMemory employs a sliding-window-based memory management strategy inspired by the garbage collection mechanisms used in the programming language to effectively segregate hot/cold data and provides fine-grained elasticity, good performance, and a pay-per-access cost model with extremely low cost. We then design and implement InfiniStore, a persistent and elastic cloud storage system, which seamlessly couples the function-based ServerlessMemory layer with a persistent, inexpensive cloud object store layer. InfiniStore enables durability despite function failures using a fast parallel recovery scheme built on the auto-scaling functionality of a FaaS (Function-as-a-Service) platform. We evaluate InfiniStore extensively using both microbenchmarking and two real-world applications. Results show that InfiniStore has more performance benefits for objects larger than 10 MB compared to AWS ElastiCache and Anna, and InfiniStore achieves 26.25% and 97.24% tenant-side cost reduction compared to InfiniCache and ElastiCache, respectively. 
    more » « less
  2. Serverless computing is an emerging paradigm in which an application's resource provisioning and scaling are managed by third-party services. Examples include AWS Lambda, Azure Functions, and Google Cloud Functions. Behind these services' easy-to-use APIs are opaque, complex infrastructure and management ecosystems. Taking on the viewpoint of a serverless customer, we conduct the largest measurement study to date, launching more than 50,000 function instances across these three services, in order to characterize their architectures, performance, and resource management efficiency. We explain how the platforms isolate the functions of different accounts, using either virtual machines or containers, which has important security implications. We characterize performance in terms of scalability, coldstart latency, and resource efficiency, with highlights including that AWS Lambda adopts a bin-packing-like strategy to maximize VM memory utilization, that severe contention between functions can arise in AWS and Azure, and that Google had bugs that allow customers to use resources for free. 
    more » « less
  3. We study the design of caching policies in applications such as serverless computing where there is not a fixed size cache to be filled, but rather there is a cost associated with the time an item stays in the cache. We present a model for such caching policies which captures the trade-off between this cost and the cost of cache misses. We characterize optimal caching policies in general and apply this characterization by deriving a closed form for Hawkes processes. Since optimal policies for Hawkes processes depend on the history of arrivals, we also develop history-independent policies which achieve near-optimal average performance. We evaluate the performances of the optimal policy and approximate polices using simulations and a data trace of Azure Functions, Microsoft's FaaS (Function as a Service) platform for serverless computing. 
    more » « less
  4. Serverless computing is a new pay-per-use cloud service paradigm that automates resource scaling for stateless functions and can potentially facilitate bursty machine learning serving. Batching is critical for latency performance and cost-effectiveness of machine learning inference, but unfortunately it is not supported by existing serverless platforms due to their stateless design. Our experiments show that without batching, machine learning serving cannot reap the benefits of serverless computing. In this paper, we present BATCH, a framework for supporting efficient machine learning serving on serverless platforms. BATCH uses an optimizer to provide inference tail latency guarantees and cost optimization and to enable adaptive batching support. We prototype BATCH atop of AWS Lambda and popular machine learning inference systems. The evaluation verifies the accuracy of the analytic optimizer and demonstrates performance and cost advantages over the state-of-the-art method MArk and the state-of-the-practice tool SageMaker. 
    more » « less
  5. Serverless computing is a new cloud programming and deployment paradigm that is receiving wide-spread uptake. Serverless offerings such as Amazon Web Services (AWS) Lambda, Google Functions, and Azure Functions automatically execute simple functions uploaded by developers, in response to cloud-based event triggers. The serverless abstraction greatly simplifies integration of concurrency and parallelism into cloud applications, and enables deployment of scalable distributed systems and services at very low cost. Although a significant first step, the serverless abstraction requires tools that software engineers can use to reason about, debug, and optimize their increasingly complex, asynchronous applications. Toward this end, we investigate the design and implementation of GammaRay, a cloud service that extracts causal dependencies across functions and through cloud services, without programmer intervention. We implement GammaRay for AWS Lambda and evaluate the overheads that it introduces for serverless micro-benchmarks and applications written in Python. 
    more » « less