skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Time Scales and Mechanisms for the Tropical Pacific Response to Global Warming: A Tug of War between the Ocean Thermostat and Weaker Walker
Abstract Different oceanic and atmospheric mechanisms have been proposed to describe the response of the tropical Pacific to global warming, yet large uncertainties persist on their relative importance and potential interaction. Here, we use idealized experiments forced with a wide range of both abrupt and gradual CO2 increases in a coupled climate model (CESM) together with a simplified box model to explore the interaction between, and time scales of, different mechanisms driving Walker circulation changes. We find a robust transient response to CO2 forcing across all simulations, lasting between 20 and 100 years, depending on how abruptly the system is perturbed. This initial response is characterized by the strengthening of the Indo-Pacific zonal SST gradient and a westward shift of the Walker cell. In contrast, the equilibrium response, emerging after 50–100 years, is characterized by a warmer cold tongue, reduced zonal winds, and a weaker Walker cell. The magnitude of the equilibrium response in the fully coupled model is set primarily by enhanced extratropical warming and weaker oceanic subtropical cells, reducing the supply of cold water to equatorial upwelling. In contrast, in the slab ocean simulations, the weakening of the Walker cell is more modest and driven by differential evaporative cooling along the equator. The “weaker Walker” mechanism implied by atmospheric energetics is also observed for the midtroposphere vertical velocity, but its surface manifestation is not robust. Correctly diagnosing the balance between these transient and equilibrium responses will improve understanding of ongoing and future climate change in the tropical Pacific.  more » « less
Award ID(s):
1844380
PAR ID:
10167973
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Climate
Volume:
33
Issue:
14
ISSN:
0894-8755
Page Range / eLocation ID:
6101 to 6118
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In response to greenhouse gas forcing, most coupled global climate models project the tropical Pacific SST trend toward an “El Niño–like” state, with a reduced zonal SST gradient and a weakened Walker circulation. However, observations over the last five decades reveal a trend toward a more “La Niña–like” state with a strengthening zonal SST gradient. Recent research indicates that the identified trend differences are unlikely to be entirely due to internal variability and probably result, at least in part, from systematic model biases. In this study, Community Earth System Model, version 2 (CESM2), is used to explore how mean-state biases within the model may influence its forced response to radiative forcing in the tropical Pacific. The results show that using flux adjustment to reduce the mean-state bias in CESM2 over the tropical regions results in a more La Niña–like trend pattern in the tropical Pacific, with a strengthening of the tropical Pacific zonal SST gradient and a relatively enhanced Walker circulation, as hypothesized to occur if the ocean thermostat mechanism is stronger than the atmospheric mechanisms which by themselves would weaken the Walker circulation. We also find that the historical strengthening of the tropical Pacific zonal gradient is transient but persists into the near term in a high-emissions future warming scenario. These results suggest the potential of flux adjustment as a method for developing alternative projections that represent a wider range of possible future tropical Pacific warming scenarios, especially for a better understanding of regional patterns of climate risk in the near term. 
    more » « less
  2. Most current climate models predict that the equatorial Pacific will evolve under greenhouse gas–induced warming to a more El Niño-like state over the next several decades, with a reduced zonal sea surface temperature gradient and weakened atmospheric Walker circulation. Yet, observations over the last 50 y show the opposite trend, toward a more La Niña-like state. Recent research provides evidence that the discrepancy cannot be dismissed as due to internal variability but rather that the models are incorrectly simulating the equatorial Pacific response to greenhouse gas warming. This implies that projections of regional tropical cyclone activity may be incorrect as well, perhaps even in the direction of change, in ways that can be understood by analogy to historical El Niño and La Niña events: North Pacific tropical cyclone projections will be too active, North Atlantic ones not active enough, for example. Other perils, including severe convective storms and droughts, will also be projected erroneously. While it can be argued that these errors are transient, such that the models’ responses to greenhouse gases may be correct in equilibrium, the transient response is relevant for climate adaptation in the next several decades. Given the urgency of understanding regional patterns of climate risk in the near term, it would be desirable to develop projections that represent a broader range of possible future tropical Pacific warming scenarios—including some in which recent historical trends continue—even if such projections cannot currently be produced using existing coupled earth system models. 
    more » « less
  3. Abstract Deep convection associated with large-scale tropical atmospheric circulations governs tropical precipitation. Under anthropogenic warming, the weakened Walker and Hadley circulations alter tropical rainfall. Ocean circulations are also expected to change due to global warming, impacting tropical atmospheric circulation systems. From the perspective of ocean heat uptake, we investigate how ocean circulation change modulates tropical atmospheric circulation and vertical motion under CO2warming by comparing fully coupled and slab-ocean simulations. We find that the slowed South Equatorial Current and subtropical cells in the Pacific induce anomalous advective warming, reducing ocean heat uptake in the central-western tropical Pacific. This, combined with increased downward radiation at the top of atmosphere and horizontal moisture advection, escalates the moisture static energy in the air column and promotes ascent in this region, shifting the Pacific Walker circulation eastward and strengthening the Pacific Hadley circulation. Across the tropical Indian Ocean, ocean heat uptake shows a dipole-like change, increasing in the eastern Indian Ocean and seas surrounding marine continents while decreasing in the western Indian Ocean. The former ocean heat uptake increase is triggered by anomalous oceanic vertical advective cooling, which abates the moisture static energy in the air column and inhibits the ascent in the area. The latter ocean heat uptake decrease is prompted by anomalous oceanic advective warming from both horizontal and vertical directions, which enhances the moisture static energy in the air column, resulting in anomalous upward motions. Over most of the tropics, ocean dynamics help attenuate the strengthening of the gross moist stability due to CO2increase, thereby promoting ascent or weakening descent in the atmosphere. Significance StatementLarge-scale tropical atmospheric circulations are expected to weaken as a result of global warming, having a significant impact on tropical precipitation. Because the atmosphere and oceans are inextricably linked, any subtle change in one can affect the other. For this reason, it is critical to understand the role of ocean circulation change in steering the response of large-scale tropical atmospheric circulation to anthropogenic warming. This study approaches the aforementioned scientific question from the novel perspective of ocean heat uptake. It demonstrates how changes in ocean circulation affect heat uptake over tropical oceans, modifying vertical motion and the Walker and Hadley cells in the tropical atmosphere in a warming climate. 
    more » « less
  4. Abstract In light of a warming climate, the complexity of the El Niño/Southern Oscillation (ENSO) makes its prediction a challenge. In addition to various flavors of ENSO, oceanic warming in the central and eastern tropical Pacific is not always accompanied by corresponding atmospheric anomalies; that is, the atmosphere and ocean remain uncoupled. Such uncoupled warm events as happened in 1979, 2004, 2014, and 2018 are rare and represent an unusual form of ENSO diversity. A weaker zonal sea surface temperature anomaly gradient across the tropical Pacific compared to a conventional El Niño may partially account for the decoupling. Also, the uncoupled warm events typically start late in the calendar year, which raises the possible influence of seasonality in background conditions for the lack of coupling. Without coupling, the impact of the warming in the central and eastern tropical Pacific on extratropical climate is different from that of its coupled counterpart. 
    more » « less
  5. Abstract A greater warming trend of sea surface temperature in the tropical Indian Ocean than in the tropical Pacific is a robust feature found in various observational data sets. Yet this interbasin warming contrast is not present in climate models. Here we investigate the impact of tropical Indian Ocean warming on the tropical Pacific response to anthropogenic greenhouse gas warming by analyzing results from coupled model pacemaker experiments. We find that warming in the Indian Ocean induces local negative sea level pressure anomalies, which extend to the western tropical Pacific, strengthening the zonal sea level pressure gradient and easterly trades in the tropical Pacific. The enhanced trade winds reduce sea surface temperature in the eastern tropical Pacific by increasing equatorial upwelling and evaporative cooling, which offset the greenhouse gas warming. This result suggests an interbasin thermostat mechanism, through which the Indian Ocean exerts its influence on the Pacific response to anthropogenic greenhouse gas warming. 
    more » « less