This paper will provide the first-year results of the impact of implementing the flipped approach in lower level math and aerospace engineering courses. A quasi-experimental between-groups research design was used for assessing the effectiveness of this methodology. The control group consisted of students who were in the same course but in sections with traditional teaching delivery while the intervention group consisted of students who were registered in the sections with the flipped approach. All students were from underrepresented groups. A positive impact on the students’ attitudes and learning strategies was observed as a result of the flipped classroom with active learning. Data pertaining to the effectiveness of the flipped classroom pedagogy is shared in this paper. Analysis of students’ cognitive engagement and their attitudes towards flipped classroom is discussed. The paper also includes best practices, their impact on student performance, and challenges in implementing a flipped classroom pedagogy.
more »
« less
Innovative Learning Strategies to Engage Students Cognitively
The role of cognitive engagement in promoting deep learning is well established. This deep learning fosters attributes of success such as self-efficacy, motivation and persistence. However, the traditional chalk-and-talk teaching and learning environment is not conducive to engage students cognitively. The biggest impediment to implementing an environment for deep learning such as active-learning is the limited duration of a typical class period most of which is consumed by lecturing. In this paper, best practices and strategies for cognitive engagement of students in the classroom are discussed. Several lower level math and aerospace engineering courses were redesigned and offered during the academic year at a historically black university. The learning strategies in these redesigned courses included the “flipped” pedagogical model which allowed the integration of the active-learning strategy in the classroom. The research study is to determine the impact of these redesigned courses on student academic performance and persistence in STEM courses. The efficacy of the design of the flipped approach was also investigated. A between-group quasi-experimental research design was used for comparing student academic performance in traditional classroom (control group) and redesigned classroom (intervention group). A within-subject, repeated measures design was also used to assess the impact on the students’ self-regulated learning. A validated instrument was used to measure the effect of the redesigned learning environment on the motivational beliefs and self-regulated learning. Data on the academic performance of the students were collected. Analyses of these data indicated a significant impact on student academic performance. A positive change in student motivation and self-regulated learning was observed. Data analysis also validated the design of the intervention. This research is supported by NSF Grant# 1712156.
more »
« less
- Award ID(s):
- 1712156
- PAR ID:
- 10168216
- Date Published:
- Journal Name:
- 2020 ASEE National Conference
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Deep learning is the result of cognitive engagement with the learning materials. Various strategies have been proposed for promoting cognitive engagement during the learning process. One such strategy is active learning which is an essential element for student engagement to foster deeper learning leading to academic success. However, time limitation of the classroom is a major obstacle in implementing active learning. One solution is the use of the flipped teaching and learning methodology. This paper provides details of strategies to promote engagement and deeper learning in lower level math and aerospace engineering courses at a Historically Black College and University (HBCU). Data on students’ motivation and self-regulation was collected using the validated instrument, Motivated Strategies for Learning Questionnaire (MSLQ). Results of the analysis and best practices impacting students’ academic performance are shared in this paper. The work is supported by NSF Grant# 1712156.more » « less
-
Exploring social and cognitive engagement in small groups through a community of learners (CoL) lensA variety of research studies reveal the advantages of actively engaging students in the learning process through collaborative work in the classroom. However, the complex nature of the learning environment in large college general chemistry courses makes it challenging to identify the different factors that affect students’ cognitive and social engagement while working on in-class tasks. To provide insights into this area, we took a closer look at students’ conversations during in-class activities to characterize typical discourse patterns and expressed chemical thinking in representative student groups in samples collected in five different learning environments across four universities. For this purpose, we adapted and applied a ‘Community of Learners’ (CoL) theoretical perspective to characterize group activity through the analysis of student discourse. Within a CoL perspective, the extent to which a group functions as a community of learners is analyzed along five dimensions including Community of Discourse (CoD), Legitimization of Differences (LoD), Building on Ideas (BoI), Reflective Learning (RL), and Community of Practice (CoP). Our findings make explicit the complexity of analyzing student engagement in large active learning environments where a multitude of variables can affect group work. These include, among others, group size and composition, the cognitive level of the tasks, the types of cognitive processes used to complete tasks, and the motivation and willingness of students to substantively engage in disciplinary reasoning. Our results point to important considerations in the design and implementation of active learning environments that engage more students with chemical ideas at higher levels of reasoning.more » « less
-
When students repeatedly reflect, it can enhance their metacognitive abilities, including self-regulatory skills of planning, monitoring, and evaluating. In a fluid mechanics course for undergraduates at a large southeastern U.S. university, in-class problem solving in a flipped classroom was coupled with intentional metacognitive skills instruction and repeated reflection to enhance metacognition. The weekly reflective responses were coded by two analysts to identify the recurring themes and uncover evidence of the development and/or reinforcement of self-regulating behaviors for academic management. To enable a comparison, a flipped classroom without the metacognitive instruction and repeated reflection was also implemented (i.e., non-intervention group). The two cohorts completed identical final exams. Based on our preliminary analysis with year one data, a statistically and practically-significant difference between the two cohorts was found with the free-response scores on the final exam in favor of the intervention cohort that had received the metacognitive support ( p < 0.0005; Cohen's d = 0.72). Also, the Metacognitive Activities Inventory (MCAI) indicated a significantly-higher positive change in self-regulatory behavior for the intervention cohort ( p = 0.001; d = 0.50). Focus groups were conducted to gather students’ perspectives on the reflective activity, with differences found by demographic group. In addition, a significantly higher proportion of females (versus males) viewed the reflections in a positive manner ( p = 0.05). Significant associations between themes in the weekly reflections and direct knowledge measures were also uncovered. This included a positive relationship between academic self-management (i.e., diligence and carefulness) and exam performance. Overall, our preliminary results point to a desirable impact of metacognitive instruction and repeated reflection on knowledge outcomes, metacognitive skills, and self-regulatory behaviors.more » « less
-
Promoting equitable undergraduate engineering education is an overarching concern at many minority-serving institutions (MSI). In addition, historical analysis of student performance in lower-division math and engineering courses at one of the largest MSI revealed an achievement gap in performance between the underrepresented minority students and other students. Furthermore, critical analysis of underlying factors overwhelmingly suggests that academic intervention coupled with sociocultural intervention may be a possible solution to help address this problem. Academic and sociocultural intervention strategies were designed and implemented in lower-division math courses through the National Science Foundation-funded project, “Building Capacity: Advancing Student Success in Undergraduate Engineering and Computer Science (ASSURE-US).” These strategies involved application-based math courses targeted explicitly at undergraduate engineering students. Results of academic intervention strategies in the lower-division math courses at one of the largest MSI demonstrate mixed effectiveness. The results of the academic intervention in lower-division Calculus I (N=150) show that 36% of students reported that the intervention was helpful and helped them learn math, while 38% were neutral. Overall, students reported having difficulty connecting the projects with the mathematics being taught. Similarly, only 10% of students expressed satisfaction with the redesigned intervention modules implemented in Integral Calculus II (N=90), while 52% were neutral. The sociocultural interventions include activities facilitated through the Student-Teacher Interaction Council. These activities include motivational speakers, exam preparation and stress-relief workshop, campus resources and college financial planning workshops, peer advising and learning communities, summer research, and faculty development and support. Results of the sociocultural intervention strategies show that 39% of students reported that the ASSURE-US project helped them identify role models in their discipline, while 34% reported that the project helped them identify and connect to a mentor. Students also reported higher awareness of campus resources, including mental health resources and academic support, with 89% and 90% of students reporting fully or partial understanding of these resources. The academic and sociocultural interventions of the ASSURE-US project were initially designed for in-person, hands-on, project-based, and student-faculty-involved activities; however, due to the COVID-19 pandemic, many of these activities were reimagined and redesigned for virtual instruction. The outcomes of this project so far were significantly impacted by the pandemic.more » « less