- Award ID(s):
- 1635866
- NSF-PAR ID:
- 10168300
- Date Published:
- Journal Name:
- Journal of Fluid Mechanics
- Volume:
- 887
- ISSN:
- 0022-1120
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
This paper presents quasilinear theory (QLT) for a classical plasma interacting with inhomogeneous turbulence. The particle Hamiltonian is kept general; for example, relativistic, electromagnetic and gravitational effects are subsumed. A Fokker–Planck equation for the dressed ‘oscillation-centre’ distribution is derived from the Klimontovich equation and captures quasilinear diffusion, interaction with the background fields and ponderomotive effects simultaneously. The local diffusion coefficient is manifestly positive-semidefinite. Waves are allowed to be off-shell (i.e. not constrained by a dispersion relation), and a collision integral of the Balescu–Lenard type emerges in a form that is not restricted to any particular Hamiltonian. This operator conserves particles, momentum and energy, and it also satisfies the $\smash {H}$ -theorem, as usual. As a spin-off, a general expression for the spectrum of microscopic fluctuations is derived. For on-shell waves, which satisfy a quasilinear wave-kinetic equation, the theory conserves the momentum and energy of the wave–plasma system. The action of non-resonant waves is also conserved, unlike in the standard version of QLT. Dewar's oscillation-centre QLT of electrostatic turbulence ( Phys. Fluids , vol. 16, 1973, p. 1102) is proven formally as a particular case and given a concise formulation. Also discussed as examples are relativistic electromagnetic and gravitational interactions, and QLT for gravitational waves is proposed.more » « less
-
Although monsoon depressions are a principal synoptic‐scale element of the South Asian monsoon, producing extreme rainfall over India and surrounding regions, there exists no widely accepted mechanism explaining their occurrence. This study presents a hierarchy of numerical experiments aimed at finding such an explanation. Using a perturbation‐basic state decomposition, we derive an anelastic system of equations that can represent disturbances growing in the complex, three‐dimensional monsoon basic state. We find that modal solutions to these equations linearized about this basic state can explain many features of observed monsoon depressions, including their warm‐over‐cold core structure, westward propagation, and lower‐tropospheric wind maximum. For the zonally symmetric case, these modes are barotropically unstable, drawing energy from the meridional shear of the monsoon trough. For the zonally varying basic state, modal solutions still derive energy from barotropic conversion, but fail to achieve positive net growth rates when dissipative processes are included. For the nonlinear equation set, these modes can be excited by a heating impulse, and their energy then remains roughly constant over several days as barotropic energy transfers oppose dissipative losses. Our results support the idea that the general concept of barotropic instability can explain the structure, propagation, and geographic distribution of monsoon depressions, but not their rapid growth rates. We speculate that condensational heating coupled to these waves is needed to obtain a positive growth rate.
-
The momentum and energy exchanges at the ocean surface are central factors determining the sea state, weather patterns and climate. To investigate the effects of surface waves on the air–sea energy exchanges, we analyse high-resolution laboratory measurements of the airflow velocity acquired above wind-generated surface waves using the particle image velocimetry technique. The velocity fields were further decomposed into the mean, wave-coherent and turbulent components, and the corresponding energy budgets were explored in detail. We specifically focused on the terms of the budget equations that represent turbulence production, wave production and wave–turbulence interactions. Over wind waves, the turbulent kinetic energy (TKE) production is positive at all heights with a sharp peak near the interface, indicating the transfer of energy from the mean shear to the turbulence. Away from the surface, however, the TKE production approaches zero. Similarly, the wave kinetic energy (WKE) production is positive in the lower portion of the wave boundary layer (WBL), representing the transfer of energy from the mean flow to the wave-coherent field. In the upper part of the WBL, WKE production becomes slightly negative, wherein the energy is transferred from the wave perturbation to the mean flow. The viscous and Stokes sublayer heights emerge as natural vertical scales for the TKE and WKE production terms, respectively. The interactions between the wave and turbulence perturbations show an energy transfer from the wave to the turbulence in the bulk of the WBL and from the turbulence to the wave in a thin layer near the interface.more » « less
-
In this study we consider the Hamiltonian approach for the construction of a map for a system with nonlinear resonant interaction, including phase trapping and phase bunching effects. We derive basic equations for a single resonant trajectory analysis and then generalize them into a map in the energy/pitch-angle space. The main advances of this approach are the possibility of considering effects of many resonances and to simulate the evolution of the resonant particle ensemble on long time ranges. For illustrative purposes we consider the system with resonant relativistic electrons and field-aligned whistler-mode waves. The simulation results show that the electron phase space density within the resonant region is flattened with reduction of gradients. This evolution is much faster than the predictions of quasi-linear theory. We discuss further applications of the proposed approach and possible ways for its generalization.more » « less
-
We present a general approach to derive Lindblad master equations for a subsystem whose dynamics is coupled to dissipative bosonic modes. The derivation relies on a Schrieffer-Wolff transformation which allows to eliminate the bosonic degrees of freedom after self-consistently determining their state as a function of the coupled quantum system. We apply this formalism to the dissipative Dicke model and derive a Lindblad master equation for the atomic spins, which includes the coherent and dissipative interactions mediated by the bosonic mode. This master equation accurately predicts the Dicke phase transition and gives the correct steady state. In addition, we compare the dynamics using exact diagonalization and numerical integration of the master equation with the predictions of semiclassical trajectories. We finally test the performance of our formalism by studying the relaxation of a NOON state and show that the dynamics captures quantum metastability beyond the mean-field approximation.more » « less