skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Policy Evaluation with Latent Confounders via Optimal Balance
Evaluating novel contextual bandit policies using logged data is crucial in applications where exploration is costly, such as medicine. But it usually relies on the assumption of no unobserved confounders, which is bound to fail in practice. We study the question of policy evaluation when we instead have proxies for the latent confounders and develop an importance weighting method that avoids fitting a latent outcome regression model. Surprisingly, we show that there exist no single set of weights that give unbiased evaluation regardless of outcome model, unlike the case with no unobserved confounders where density ratios are sufficient. Instead, we propose an adversarial objective and weights that minimize it, ensuring sufficient balance in the latent confounders regardless of outcome model. We develop theory characterizing the consistency of our method and tractable algorithms for it. Empirical results validate the power of our method when confounders are latent.  more » « less
Award ID(s):
1846210
PAR ID:
10168520
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Advances in neural information processing systems
Volume:
32
ISSN:
1049-5258
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Propensity score weighting is a tool for causal inference to adjust for measured confounders in observational studies. In practice, data often present complex structures, such as clustering, which make propensity score modeling and estimation challenging. In addition, for clustered data, there may be unmeasured cluster-level covariates that are related to both the treatment assignment and outcome. When such unmeasured cluster-specific confounders exist and are omitted in the propensity score model, the subsequent propensity score adjustment may be biased. In this article, we propose a calibration technique for propensity score estimation under the latent ignorable treatment assignment mechanism, i. e., the treatment-outcome relationship is unconfounded given the observed covariates and the latent cluster-specific confounders. We impose novel balance constraints which imply exact balance of the observed confounders and the unobserved cluster-level confounders between the treatment groups. We show that the proposed calibrated propensity score weighting estimator is doubly robust in that it is consistent for the average treatment effect if either the propensity score model is correctly specified or the outcome follows a linear mixed effects model. Moreover, the proposed weighting method can be combined with sampling weights for an integrated solution to handle confounding and sampling designs for causal inference with clustered survey data. In simulation studies, we show that the proposed estimator is superior to other competitors. We estimate the effect of School Body Mass Index Screening on prevalence of overweight and obesity for elementary schools in Pennsylvania. 
    more » « less
  2. We study the problem of learning conditional average treatment effects (CATE) from observational data with unobserved confounders. The CATE function maps baseline covariates to individual causal effect predictions and is key for personalized assessments. Recent work has focused on how to learn CATE under unconfoundedness, i.e., when there are no unobserved confounders. Since CATE may not be identified when unconfoundedness is violated, we develop a functional interval estimator that predicts bounds on the individual causal effects under realistic violations of unconfoundedness. Our estimator takes the form of a weighted kernel estimator with weights that vary adversarially. We prove that our estimator is sharp in that it converges exactly to the tightest bounds possible on CATE when there may be unobserved confounders. Further, we study personalized decision rules derived from our estimator and prove that they achieve optimal minimax regret asymptotically. We assess our approach in a simulation study as well as demonstrate its application in the case of hormone replacement therapy by comparing conclusions from a real observational study and clinical trial. 
    more » « less
  3. null (Ed.)
    One fundamental problem in causality learning is to estimate the causal effects of one or multiple treatments (e.g., medicines in the prescription) on an important outcome (e.g., cure of a disease). One major challenge of causal effect estimation is the existence of unobserved confounders -- the unobserved variables that affect both the treatments and the outcome. Recent studies have shown that by modeling how instances are assigned with different treatments together, the patterns of unobserved confounders can be captured through their learned latent representations. However, the interpretability of the representations in these works is limited. In this paper, we focus on the multi-cause effect estimation problem from a new perspective by learning disentangled representations of confounders. The disentangled representations not only facilitate the treatment effect estimation but also strengthen the understanding of causality learning process. Experimental results on both synthetic and real-world datasets show the superiority of our proposed framework from different aspects. 
    more » « less
  4. Recommender systems may be confounded by various types of confounding factors (also called confounders) that may lead to inaccurate recommendations and sacrificed recommendation performance. Current approaches to solving the problem usually design each specific model for each specific confounder. However, real-world systems may include a huge number of confounders and thus designing each specific model for each specific confounder could be unrealistic. More importantly, except for those “explicit confounders” that experts can manually identify and process such as item’s position in the ranking list, there are also many “latent confounders” that are beyond the imagination of experts. For example, users’ rating on a song may depend on their current mood or the current weather, and users’ preference on ice creams may depend on the air temperature. Such latent confounders may be unobservable in the recorded training data. To solve the problem, we propose Deconfounded Causal Collaborative Filtering (DCCF). We first frame user behaviors with unobserved confounders into a causal graph, and then we design a front-door adjustment model carefully fused with machine learning to deconfound the influence of unobserved confounders. Experiments on real-world datasets show that our method is able to deconfound unobserved confounders to achieve better recommendation performance. 
    more » « less
  5. Summary Unobserved confounding presents a major threat to causal inference in observational studies. Recently, several authors have suggested that this problem could be overcome in a shared confounding setting where multiple treatments are independent given a common latent confounder. It has been shown that under a linear Gaussian model for the treatments, the causal effect is not identifiable without parametric assumptions on the outcome model. In this note, we show that the causal effect is indeed identifiable if we assume a general binary choice model for the outcome with a non-probit link. Our identification approach is based on the incongruence between Gaussianity of the treatments and latent confounder and non-Gaussianity of a latent outcome variable. We further develop a two-step likelihood-based estimation procedure. 
    more » « less