skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Design and Performance of an Ultra-Compact Low-Speed Low-Turbulence Level Wind Tunnel for Aerodynamic and Animal Flight Experiments
The paper presents a novel closed-circuit ultra-compact wind tunnel with an 8:1 contraction ratio and high flow quality. Its key design features include a 2D-type main diffuser, a minimum length contraction, and a screened expanding vane cascade in the last corner. These features reduce the overall tunnel footprint area to less than half of the area of a conventional tunnel design with the same test section size and same contraction ratio. The test section turbulence level is a very low 0.03% over a 4Hz–8500Hz bandwidth.  more » « less
Award ID(s):
1725935
PAR ID:
10168994
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
AIAA AVIATION 2020 Forum
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The variety of configurations for vertical-axis wind turbines (VAWTs) make the development of universal scaling relationships for even basic performance parameters difficult. Rotor geometry changes can be characterized using the concept of solidity, defined as the ratio of solid rotor area to the swept area. However, few studies have explored the effect of this parameter at full-scale conditions due to the challenge of matching both the non-dimensional rotational rate (or tip speed ratio) and scale (or Reynolds number) in conventional wind tunnels. In this study, experiments were conducted on a VAWT model using a specialized compressed-air wind tunnel where the density can be increased to over 200 times atmospheric air. The number of blades on the model was altered to explore how solidity affects performance while keeping other geometric parameters, such as the ratio of blade chord to rotor radius, the same. These data were collected at conditions relevant to the field-scale VAWT but in the controlled environment of the lab. For the three highest solidity rotors (using the most blades), performance was found to depend similarly on the Reynolds number, despite changes in rotational effects. This result has direct implications for the modelling and design of high-solidity field-scale VAWTs. 
    more » « less
  2. Design considerations for a new detonation tube are presented to further improve detonation wave interaction research. The new structure consists of four independent portions: the deflagration to detonation initiation section, the transition expansion section, the operating test section, and the dump section. The initiation, transition, and test sections are designed to operate within a temperature limit of 150 °C and a maximum detonation pressure of 100 bar. The test section is comprised of interchangeable 155 cm 316 stainless steel plates assembled to create a 10x10 cm square hollow structure, sealed with longitudinal O-rings between plates and lateral O-rings between flanges and plate ends. The ports and windows are all sealed with O-rings. The current assembly has 30 circular ports for pressure measurements and ion gauge measurements. These same circular ports will also be used for laser spectroscopy measurements through 1.27 cm diameter circular windows. Two axial rectangular windows of 16.51 x 5.74 cm and two of 16.51 x 2.54 cm, with centers 52 cm from the downstream end of the test section, are used for various diagnostics and imaging techniques. Hydrostatic droplet release, piezo-actuated droplet release, and vibration-induced droplet release have been designed and discussed. 
    more » « less
  3. Investigations on simulated near-surface atmospheric boundary layer (ABL) in an open-jet facility are carried out by conducting experimental tests on small-scale models of low-rise buildings. The objectives of the current study are: (1) to determine the optimal location of test buildings from the exit of the open-jet facility, and (2) to investigate the scale effect on the aerodynamic pressure characteristics. Based on the results, the newly built open-jet facility is well capable of producing mean wind speed and turbulence profiles representing open-terrain conditions. The results show that the proximity of the test model to the open-jet governs the length of the separation bubble as well as the peak roof pressures. However, test models placed at a horizontal distance of 2.5H (H is height of the wind field) from the exit of the open-jet, with a width that is half the width of the wind field and a length of 1H, have consistent mean and peak pressure coefficients when compared with available results from wind tunnel testing. In addition, testing models with as large as 16% blockage ratio is feasible within the open-jet facility. This reveals the importance of open-jet facilities as a robust tool to alleviate the scale restrictions involved in physical investigations of flow pattern around civil engineering structures. The results and findings of this study are useful for putting forward recommendations and guidelines for testing protocols at open-jet facilities, eventually helping the progress of enhanced standard provisions on the design of low-rise buildings for wind. 
    more » « less
  4. A hybrid femtosecond/picosecond coherent anti-Stokes Raman scattering (fs/ps CARS) system was developed for quantitative measurements of temperature in a laboratory-scale supersonic jet facility. Measurements were recorded at low pressures and densities relevant for supersonic and hypersonic environments, with special interest in exploring the feasibility of deploying this technique in the 20-inch Mach 6 and 31-inch Mach 10 wind tunnels located at NASA Langley Research Center. Modifications to the existing supersonic jet facility were made to simulate a test section with a width of 31 inches, so that the size of the test section is relevant for either wind tunnel. The CARS system was designed such that a similar beam geometry can be used in the laboratory to acquire point-based fs/ps CARS measurements along two axes of translation. Rotational Raman transitions of O2 and N2 were targeted. 
    more » « less
  5. In this paper, we investigate the design of pennate topology fluidic artificial muscle bundles under spatial and operating constraints. Soft fluidic actuators are of great interest to roboticists and engineers due to their potential for inherent compliance and safe human-robot interaction. McKibben fluidic artificial muscles (FAMs) are soft fluidic actuators that are especially attractive due to their high force-to-weight ratio, inherent flexibility, relatively inexpensive construction, and muscle-like force-contraction behavior. Observations of natural muscles of equivalent cross-sectional area have indicated that muscles with a pennate fiber configuration can achieve higher output forces as compared to the parallel configuration due to larger physiological cross-sectional area (PCSA). However, this is not universally true because the contraction and rotation behavior of individual actuator units (fibers) are both key factors contributing to situations where bipennate muscle configurations are advantageous as compared to parallel muscle configurations. This paper analytically explores a design case for pennate topology artificial muscle bundles that maximize fiber radius. The findings can provide insights on optimizing artificial muscle topologies under spatial constraints. Furthermore, the study can be extended to evaluate muscle topology implications on work capacity and efficiency for tracking a desired dynamic motion. 
    more » « less