skip to main content


Title: Elemental fluorine detection by dielectric barrier discharge coupled to nano-ESI mass spectrometry for non-targeted analysis of fluorinated compounds
The growing use of fluorochemicals has elevated the need for non-targeted detection of unknown fluorinated compounds and transformation products. Elemental mass spectrometry coupled to chromatography offers a facile approach for such analyses by using fluorine as an elemental tag. However, efficient ionization of fluorine has been an ongoing challenge. Here, we demonstrate a novel atmospheric-pressure elemental ionization method where fluorinated compounds separated by GC are converted to Na2F+ for non-targeted detection. The compounds are first introduced into a helium dielectric barrier discharge (DBD) for breakdown. The plasma products are subsequently ionized by interaction with a nano-ESI plume of sodium-containing aqueous electrolytes. Our studies point to HF as the main plasma product contributing to Na2F+ formation. Moreover, the results reveal that Na2F+ is largely formed by the ion-neutral reaction between HF and Na2A(NaA)n+, gas-phase reagent ions produced by nano-ESI where A represents the anion of the electrolyte. Near-uniform fluorine response factors are obtained for a wide range of compounds, highlighting good efficiency of HF formation by DBD regardless of chemical structure of the compounds. Detection limits of 3.5 to 19.4 pg fluorine on-column are obtained using the reported GC-DBD-nano-ESI-MS. As an example of non-targeted screening, extractions from oil-and-water-repellent fabrics are analyzed via monitoring Na2F+, resulting in detection of a fluorinated compound on a clothing item. Notably, facile switching of the ion source to atmospheric-pressure chemical ionization with the exact same chromatographic method allows identification of the detected compound at the flagged retention time.  more » « less
Award ID(s):
1904835
NSF-PAR ID:
10169161
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Analytical Chemistry
ISSN:
0003-2700
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Increased applications of fluorochemicals have prompted development of elemental methods for detection and quantitation of these compounds. However, high-sensitivity detection of fluorine is a challenge because of difficulties in excitation and ionization of this element. Recently, a new approach has emerged to detect F as a diatomic ion (BaF+) in inductively coupled plasma mass spectrometry (ICP-MS). However, formation of this species in the high-temperature plasma is inefficient, leading to low sensitivities. Here, we introduce a post-ICP chemical ionization approach to enhance analytical performance for F detection in liquid samples. Solutions of fluorochemicals are introduced into an ICP leading to formation of HF in the afterglow. Subsequently, reagent ions from nanospray of sodium acetate and barium acetate electrolytes are utilized to ionize HF to Na2F+ and BaF+, respectively, via post-plasma ion-neutral reactions. Both ions provide substantially better sensitivities compared to that of BaF+ formed inside the plasma in conventional ICP-MS methods. Notably, post-plasma BaF+ offers a sensitivity of 280 cps/ppb for F, near two orders of magnitude higher than that of conventional ICP-MS methods. Compound-independent response for F from structurally diverse organofluorines is confirmed by monitoring BaF+ and a limit of detection (LOD) of 8–11 ng/mL F is achieved. Importantly, isobaric interferences are substantially reduced in chemical ionization, leaving F background as the main factor in LOD determination. Insights into BaF+ formation via experimental and computational investigations suggest that BaNO2+ and Ba(H2O)n +2 serve as reagent ions while nonreactive BaCH3CO2+ is the dominant ion produced by nanospray. The facile development of effective post-plasma ionization chemistries using the presented approach offers a path for further improvements in F elemental analysis. 
    more » « less
  2. Elemental analysis of fluorochemicals has received renewed attention in recent years stemming from the increased use of fluorinated compounds. However, fundamental drawbacks of in-plasma ionization have hindered ICPMS applications in this area. Recently, we have introduced post-ICP chemical ionization for BaF + formation using Ba-containing reagent ions supplied by nanospray, leading to major improvements in F detection sensitivity. Here, we present further insights into this post-plasma chemical ionization. First, we examine the effect of oxygen introduced into the plasma (a necessity for organic solvent introduction) on BaF + ion formation. The results indicate that excess plasma oxygen leads to abundant HNO 3 in the post-plasma flow, shifting ionization reactions toward BaNO 3 + formation and suppressing BaF + sensitivity. To amend this, we utilize reagent ions with other metal centers to impart selectivity toward F detection. Our investigations show that robustness of F detection in the presence of abundant HNO 3 improves in the order Al 3+ ≈ Sc 3+ > La 3+ > Mg 2+ > Ba 2+ as the metal center in the reagent ions, consistent with the stronger metal–F bond in the series. Sc-based ionization resulting in ScNO 3 F + shows the best balance between sensitivity and robustness in the presence of nitric acid. Similarly, this ion shows an improved tolerance relative to BaF + for a Cl-containing matrix where HCl interferes with ionization. Finally, we demonstrate a unique feature of post-plasma chemical ionization for real-time flagging of matrix effects via monitoring reagent ions. These findings provide significant improvements of post-plasma chemical ionization for elemental F analysis, particularly for online chromatographic detection where solvent gradients are utilized. 
    more » « less
  3. Secondary organic aerosol (SOA) accounts for a large fraction of submicron particles in the atmosphere. SOA can occur in amorphous solid or semi-solid phase states depending on chemical composition, relative humidity (RH), and temperature. The phase transition between amorphous solid and semi-solid states occurs at the glass transition temperature (Tg). We have recently developed a method to estimate Tg of pure compounds containing carbon, hydrogen, and oxygen atoms (CHO compounds) with molar mass less than 450 g mol−1 based on their molar mass and atomic O : C ratio. In this study, we refine and extend this method for CH and CHO compounds with molar mass up to ∼ 1100 g mol−1 using the number of carbon, hydrogen, and oxygen atoms. We predict viscosity from the Tg-scaled Arrhenius plot of fragility (viscosity vs. TgT) as a function of the fragility parameter D. We compiled D values of organic compounds from the literature and found that D approaches a lower limit of ∼ 10 (±1.7) as the molar mass increases. We estimated the viscosity of α-pinene and isoprene SOA as a function of RH by accounting for the hygroscopic growth of SOA and applying the Gordon–Taylor mixing rule, reproducing previously published experimental measurements very well. Sensitivity studies were conducted to evaluate impacts of Tg, D, the hygroscopicity parameter (κ), and the Gordon–Taylor constant on viscosity predictions. The viscosity of toluene SOA was predicted using the elemental composition obtained by high-resolution mass spectrometry (HRMS), resulting in a good agreement with the measured viscosity. We also estimated the viscosity of biomass burning particles using the chemical composition measured by HRMS with two different ionization techniques: electrospray ionization (ESI) and atmospheric pressure photoionization (APPI). Due to differences in detected organic compounds and signal intensity, predicted viscosities at low RH based on ESI and APPI measurements differ by 2–5 orders of magnitude. Complementary measurements of viscosity and chemical composition are desired to further constrain RH-dependent viscosity in future studies. 
    more » « less
  4. Rationale

    Nitrogen isotopic compositions (δ15N) of source and trophic amino acids (AAs) are crucial tracers of N sources and trophic enrichments in diverse fields, including archeology, astrobiochemistry, ecology, oceanography, and paleo‐sciences. The current analytical technique using gas chromatography‐combustion‐isotope ratio mass spectrometry (GC/C/IRMS) requires derivatization, which is not compatible with some key AAs. Another approach using high‐performance liquid chromatography‐elemental analyzer‐IRMS (HPLC/EA/IRMS) may experience coelution issues with other compounds in certain types of samples, and the highly sensitive nano‐EA/IRMS instrumentations are not widely available.

    Methods

    We present a method for high‐precision δ15N measurements of AAs (δ15N‐AA) optimized for canonical source AA‐phenylalanine (Phe) and trophic AA‐glutamic acid (Glu). This offline approach entails purification and separation via high‐pressure ion‐exchange chromatography (IC) with automated fraction collection, the sequential chemical conversion of AA to nitrite and then to nitrous oxide (N2O), and the final determination of δ15N of the produced N2O via purge‐and‐trap continuous‐flow isotope ratio mass spectrometry (PT/CF/IRMS).

    Results

    The cross‐plots of δ15N of Glu and Phe standards (four different natural‐abundance levels) generated by this method and their accepted values have a linear regression slope of 1 and small intercepts demonstrating high accuracy. The precisions were 0.36‰–0.67‰ for Phe standards and 0.27‰–0.35‰ for Glu standards. Our method and the GC/C/IRMS approach produced equivalent δ15N values for two lab standards (McCarthy Lab AA mixture and cyanobacteria) within error. We further tested our method on a wide range of natural sample matrices and obtained reasonable results.

    Conclusions

    Our method provides a reliable alternative to the current methods for δ15N‐AA measurement as IC or HPLC‐based techniques that can collect underivatized AAs are widely available. Our chemical approach that converts AA to N2O can be easily implemented in laboratories currently analyzing δ15N of N2O using PT/CF/IRMS. This method will help promote the use of δ15N‐AA in important studies of N cycling and trophic ecology in a wide range of research areas.

     
    more » « less
  5. Abstract

    Polycyclic aromatic hydrocarbons (PAHs) are common pollutants present in atmospheric aerosols and other environmental mixtures. They are of particular air quality and human health concerns as many of them are carcinogenic toxins. They also affect absorption of solar radiation by aerosols, therefore contributing to the radiative forcing of climate. For environmental chemistry studies, it is advantageous to quantify PAH components using the same analytical technics that are commonly applied to characterize a broad range of polar analytes present in the same environmental mixtures. Liquid chromatography coupled with photodiode array and high‐resolution mass spectrometric detection (LC‐PDA‐HRMS) is a method of choice for comprehensive characterization of chemical composition and quantification of light absorption properties of individual organic compounds present in the environmental samples. However, quantification of non‐polar PAHs by this method is poorly established because of their imperfect ionization in electrospray ionization (ESI) technique. This tutorial article provides a comprehensive evaluation of the quantitative analysis of 16 priority pollutant PAHs in a standard reference material using the LC–MS platform coupled with the ESI source. Results are further corroborated by the quantitation experiments using an atmospheric pressure photoionization (APPI) method, which is more sensitive for the PAH detection. The basic concepts and step‐by‐step practical guidance for the PAHs quantitative characterization are offered based on the systematic experiments, which include (1) Evaluation effects of different acidification levels by formic acid on the (+)ESI‐MS detection of PAHs. (2) Comparison of detection limits in ESI+ versus APPI+ experiments. (3) Investigation of the PAH fragmentation patterns in MS2experiments at different collision energies. (4) Calculation of wavelength dependent mass absorption coefficient (MACλ) of the standard mixture and its individual PAHs using LC‐PDA data. (5) Assessment of the minimal injected mass required for accurate quantification ofMACλof the standard mixture and of a multi‐component environmental sample.

     
    more » « less