skip to main content


Title: Elemental detection of fluorochemicals by nanospray-induced chemical ionization in afterglow of an inductively coupled plasma
Increased applications of fluorochemicals have prompted development of elemental methods for detection and quantitation of these compounds. However, high-sensitivity detection of fluorine is a challenge because of difficulties in excitation and ionization of this element. Recently, a new approach has emerged to detect F as a diatomic ion (BaF+) in inductively coupled plasma mass spectrometry (ICP-MS). However, formation of this species in the high-temperature plasma is inefficient, leading to low sensitivities. Here, we introduce a post-ICP chemical ionization approach to enhance analytical performance for F detection in liquid samples. Solutions of fluorochemicals are introduced into an ICP leading to formation of HF in the afterglow. Subsequently, reagent ions from nanospray of sodium acetate and barium acetate electrolytes are utilized to ionize HF to Na2F+ and BaF+, respectively, via post-plasma ion-neutral reactions. Both ions provide substantially better sensitivities compared to that of BaF+ formed inside the plasma in conventional ICP-MS methods. Notably, post-plasma BaF+ offers a sensitivity of 280 cps/ppb for F, near two orders of magnitude higher than that of conventional ICP-MS methods. Compound-independent response for F from structurally diverse organofluorines is confirmed by monitoring BaF+ and a limit of detection (LOD) of 8–11 ng/mL F is achieved. Importantly, isobaric interferences are substantially reduced in chemical ionization, leaving F background as the main factor in LOD determination. Insights into BaF+ formation via experimental and computational investigations suggest that BaNO2+ and Ba(H2O)n +2 serve as reagent ions while nonreactive BaCH3CO2+ is the dominant ion produced by nanospray. The facile development of effective post-plasma ionization chemistries using the presented approach offers a path for further improvements in F elemental analysis.  more » « less
Award ID(s):
1904835
NSF-PAR ID:
10320895
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Journal of Analytical Atomic Spectrometry
ISSN:
0267-9477
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Elemental analysis of fluorochemicals has received renewed attention in recent years stemming from the increased use of fluorinated compounds. However, fundamental drawbacks of in-plasma ionization have hindered ICPMS applications in this area. Recently, we have introduced post-ICP chemical ionization for BaF + formation using Ba-containing reagent ions supplied by nanospray, leading to major improvements in F detection sensitivity. Here, we present further insights into this post-plasma chemical ionization. First, we examine the effect of oxygen introduced into the plasma (a necessity for organic solvent introduction) on BaF + ion formation. The results indicate that excess plasma oxygen leads to abundant HNO 3 in the post-plasma flow, shifting ionization reactions toward BaNO 3 + formation and suppressing BaF + sensitivity. To amend this, we utilize reagent ions with other metal centers to impart selectivity toward F detection. Our investigations show that robustness of F detection in the presence of abundant HNO 3 improves in the order Al 3+ ≈ Sc 3+ > La 3+ > Mg 2+ > Ba 2+ as the metal center in the reagent ions, consistent with the stronger metal–F bond in the series. Sc-based ionization resulting in ScNO 3 F + shows the best balance between sensitivity and robustness in the presence of nitric acid. Similarly, this ion shows an improved tolerance relative to BaF + for a Cl-containing matrix where HCl interferes with ionization. Finally, we demonstrate a unique feature of post-plasma chemical ionization for real-time flagging of matrix effects via monitoring reagent ions. These findings provide significant improvements of post-plasma chemical ionization for elemental F analysis, particularly for online chromatographic detection where solvent gradients are utilized. 
    more » « less
  2. The growing use of fluorochemicals has elevated the need for non-targeted detection of unknown fluorinated compounds and transformation products. Elemental mass spectrometry coupled to chromatography offers a facile approach for such analyses by using fluorine as an elemental tag. However, efficient ionization of fluorine has been an ongoing challenge. Here, we demonstrate a novel atmospheric-pressure elemental ionization method where fluorinated compounds separated by GC are converted to Na2F+ for non-targeted detection. The compounds are first introduced into a helium dielectric barrier discharge (DBD) for breakdown. The plasma products are subsequently ionized by interaction with a nano-ESI plume of sodium-containing aqueous electrolytes. Our studies point to HF as the main plasma product contributing to Na2F+ formation. Moreover, the results reveal that Na2F+ is largely formed by the ion-neutral reaction between HF and Na2A(NaA)n+, gas-phase reagent ions produced by nano-ESI where A represents the anion of the electrolyte. Near-uniform fluorine response factors are obtained for a wide range of compounds, highlighting good efficiency of HF formation by DBD regardless of chemical structure of the compounds. Detection limits of 3.5 to 19.4 pg fluorine on-column are obtained using the reported GC-DBD-nano-ESI-MS. As an example of non-targeted screening, extractions from oil-and-water-repellent fabrics are analyzed via monitoring Na2F+, resulting in detection of a fluorinated compound on a clothing item. Notably, facile switching of the ion source to atmospheric-pressure chemical ionization with the exact same chromatographic method allows identification of the detected compound at the flagged retention time. 
    more » « less
  3. Ciguatera poisoning is a global health concern caused by the consumption of seafood containing ciguatoxins (CTXs). Detection of CTXs poses significant analytical challenges due to their low abundance even in highly toxic fish, the diverse and in-part unclarified structures of many CTX congeners, and the lack of reference standards. Selective detection of CTXs requires methods such as liquid chromatography coupled to tandem mass spectrometry (LC–MS/MS) or high-resolution MS (LC–HRMS). While HRMS data can provide greatly improved resolution, it is typically less sensitive than targeted LC–MS/MS and does not reliably comply with the FDA guidance level of 0.1 µg/kg CTXs in fish tissue that was established for Caribbean CTX-1 (C-CTX-1). In this study, we provide a new chemical derivatization approach employing a fast and simple one-pot derivatization with Girard’s reagent T (GRT) that tags the C-56-ketone intermediate of the two equilibrating C-56 epimers of C-CTX-1 with a quaternary ammonium moiety. This derivatization improved the LC–MS/MS and LC–HRMS responses to C-CTX-1 by approximately 40- and 17-fold on average, respectively. These improvements in sensitivity to the GRT-derivative of C-CTX-1 are attributable to: the improved ionization efficiency caused by insertion of a quaternary ammonium ion; the absence of adduct-ions and water-loss peaks for the GRT derivative in the mass spectrometer, and; the prevention of on-column epimerization (at C-56 of C-CTX-1) by GRT derivatization, leading to much better chromatographic peak shapes. This C-CTX-1–GRT derivatization strategy mitigates many of the shortcomings of current LC–MS analyses for C-CTX-1 by improving instrument sensitivity, while at the same time adding selectivity due to the reactivity of GRT with ketones and aldehydes. 
    more » « less
  4. Metal-mediated cross-coupling reactions offer organic chemists a wide array of stereo- and chemically-selective reactions with broad applications in fine chemical and pharmaceutical synthesis.1 Current batch-based synthesis methods are beginning to be replaced with flow chemistry strategies to take advantage of the improved consistency and process control methods offered by continuous flow systems.2,3 Most cross-coupling chemistries still encounter several issues in flow using homogeneous catalysis, including expensive catalyst recovery and air sensitivity due to the chemical nature of the catalyst ligands.1 To mitigate some of these issues, a ligand-free heterogeneous catalysis reaction was developed using palladium (Pd) loaded into a polymeric network of a silicone elastomer, poly(hydromethylsiloxane) (PHMS), that is not air sensitive and can be used with mild reaction solvents (ethanol and water).4 In this work we present a novel method of producing soft catalytic microparticles using a multiphase flow-focusing microreactor and demonstrate their application for continuous Suzuki-Miyaura cross-coupling reactions. The catalytic microparticles are produced in a coaxial glass capillary-based 3D flow-focusing microreactor. The microreactor consists of two precursors, a cross-linking catalyst in toluene and a mixture of the PHMS polymer and a divinyl cross-linker. The dispersed phase containing the polymer, cross-linker, and cross-linking catalyst is continuously mixed and then formed into microdroplets by the continuous phase of water and surfactant (sodium dodecyl sulfate) introduced in a counter-flow configuration. Elastomeric microdroplets with a diameter ranging between 50 to 300 micron are produced at 25 to 250 Hz with a size polydispersity less than 3% in single stream production. The physicochemical properties of the elastomeric microparticles such as particle swelling/softness can be tuned using the ratio of cross-linker to polymer as well as the ratio of polymer mixture to solvent during the particle formation. Swelling in toluene can be tuned up to 400% of the initial particle volume by reducing the concentration of cross-linker in the mixture and increasing the ratio of polymer to solvent during production.5 After the particles are produced and collected, they are transferred into toluene containing palladium acetate, allowing the particles to incorporate the palladium into the polymer network and then reduce the palladium to Pd0 with the Si-H functionality present on the PHMS backbones. After the reduction, the Pd-loaded particles can be washed and dried for storage or switched into an ethanol/water solution for loading into a micro-packed bed reactor (µ-PBR) for continuous organic synthesis. The in-situ reduction of Pd within the PHMS microparticles was confirmed using energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS) and focused ion beam-SEM, and TEM techniques. In the next step, we used the developed µ-PBR to conduct continuous organic synthesis of 4-phenyltoluene by Suzuki-Miyaura cross-coupling of 4-iodotoluene and phenylboronic acid using potassium carbonate as the base. Catalyst leaching was determined to only occur at sub ppm concentrations even at high solvent flow rates after 24 h of continuous run using inductively coupled plasma mass spectrometry (ICP-MS). The developed µ-PBR using the elastomeric microparticles is an important initial step towards the development of highly-efficient and green continuous manufacturing technologies in the pharma industry. In addition, the developed elastomeric microparticle synthesis technique can be utilized for the development of a library of other chemically cross-linkable polymer/cross-linker pairs for applications in organic synthesis, targeted drug delivery, cell encapsulation, or biomedical imaging. References 1. Ruiz-Castillo P, Buchwald SL. Applications of Palladium-Catalyzed C-N Cross-Coupling Reactions. Chem Rev. 2016;116(19):12564-12649. 2. Adamo A, Beingessner RL, Behnam M, et al. On-demand continuous-flow production of pharmaceuticals in a compact, reconfigurable system. Science. 2016;352(6281):61 LP-67. 3. Jensen KF. Flow Chemistry — Microreaction Technology Comes of Age. 2017;63(3). 4. Stibingerova I, Voltrova S, Kocova S, Lindale M, Srogl J. Modular Approach to Heterogenous Catalysis. Manipulation of Cross-Coupling Catalyst Activity. Org Lett. 2016;18(2):312-315. 5. Bennett JA, Kristof AJ, Vasudevan V, Genzer J, Srogl J, Abolhasani M. Microfluidic synthesis of elastomeric microparticles: A case study in catalysis of palladium-mediated cross-coupling. AIChE J. 2018;0(0):1-10. 
    more » « less
  5. Abstract. A new ion source (IS) utilizing vacuum ultraviolet (VUV) light is developed and characterized for use with iodide–chemical ionization massspectrometers (I−-CIMS). The VUV-IS utilizes a compact krypton lamp that emits light at two wavelengths corresponding to energies of∼10.030 and 10.641 eV. The VUV light photoionizes either methyl iodide (ionization potential, IP = 9.54 ± 0.02 eV)or benzene (IP = 9.24378 ± 0.00007 eV) to form cations and photoelectrons. The electrons react with methyl iodide to formI−, which serves as the reagent ion for the CIMS. The VUV-IS is characterized by measuring the sensitivity of a quadrupole CIMS (Q-CIMS) toformic acid, molecular chlorine, and nitryl chloride under a variety of flow and pressure conditions. The sensitivity of the Q-CIMS, with theVUV-IS, reached up to ∼700 Hz pptv−1, with detection limits of less than 1 pptv for a 1 min integration period. Thereliability of the Q-CIMS with a VUV-IS is demonstrated with data from a month-long ground-based field campaign. The VUV-IS is further tested byoperation on a high-resolution time-of-flight CIMS (TOF-CIMS). Sensitivities greater than 25 Hz pptv−1 were obtained for formic acid andmolecular chlorine, which were similar to that obtained with a radioactive source. In addition, the mass spectra from sampling ambient air wascleaner with the VUV-IS on the TOF-CIMS compared to measurements using a radioactive source. These results demonstrate that the VUV lamp is a viablesubstitute for radioactive ion sources on I−-CIMS systems for most applications. In addition, initial tests demonstrate that the VUV-IS canbe extended to other reagent ions by the use of VUV absorbers with low IPs to serve as a source of photoelectrons for high IP electron attachers,such as SF6-. 
    more » « less