Increased applications of fluorochemicals have prompted development of elemental methods for detection and quantitation of these compounds. However, high-sensitivity detection of fluorine is a challenge because of difficulties in excitation and ionization of this element. Recently, a new approach has emerged to detect F as a diatomic ion (BaF+) in inductively coupled plasma mass spectrometry (ICP-MS). However, formation of this species in the high-temperature plasma is inefficient, leading to low sensitivities. Here, we introduce a post-ICP chemical ionization approach to enhance analytical performance for F detection in liquid samples. Solutions of fluorochemicals are introduced into an ICP leading to formation of HF in the afterglow. Subsequently, reagent ions from nanospray of sodium acetate and barium acetate electrolytes are utilized to ionize HF to Na2F+ and BaF+, respectively, via post-plasma ion-neutral reactions. Both ions provide substantially better sensitivities compared to that of BaF+ formed inside the plasma in conventional ICP-MS methods. Notably, post-plasma BaF+ offers a sensitivity of 280 cps/ppb for F, near two orders of magnitude higher than that of conventional ICP-MS methods. Compound-independent response for F from structurally diverse organofluorines is confirmed by monitoring BaF+ and a limit of detection (LOD) of 8–11 ng/mL F is achieved. Importantly, isobaric interferences are substantially reduced in chemical ionization, leaving F background as the main factor in LOD determination. Insights into BaF+ formation via experimental and computational investigations suggest that BaNO2+ and Ba(H2O)n +2 serve as reagent ions while nonreactive BaCH3CO2+ is the dominant ion produced by nanospray. The facile development of effective post-plasma ionization chemistries using the presented approach offers a path for further improvements in F elemental analysis.
more »
« less
Fluorine-selective post-plasma chemical ionization for enhanced elemental detection of fluorochemicals
Elemental analysis of fluorochemicals has received renewed attention in recent years stemming from the increased use of fluorinated compounds. However, fundamental drawbacks of in-plasma ionization have hindered ICPMS applications in this area. Recently, we have introduced post-ICP chemical ionization for BaF + formation using Ba-containing reagent ions supplied by nanospray, leading to major improvements in F detection sensitivity. Here, we present further insights into this post-plasma chemical ionization. First, we examine the effect of oxygen introduced into the plasma (a necessity for organic solvent introduction) on BaF + ion formation. The results indicate that excess plasma oxygen leads to abundant HNO 3 in the post-plasma flow, shifting ionization reactions toward BaNO 3 + formation and suppressing BaF + sensitivity. To amend this, we utilize reagent ions with other metal centers to impart selectivity toward F detection. Our investigations show that robustness of F detection in the presence of abundant HNO 3 improves in the order Al 3+ ≈ Sc 3+ > La 3+ > Mg 2+ > Ba 2+ as the metal center in the reagent ions, consistent with the stronger metal–F bond in the series. Sc-based ionization resulting in ScNO 3 F + shows the best balance between sensitivity and robustness in the presence of nitric acid. Similarly, this ion shows an improved tolerance relative to BaF + for a Cl-containing matrix where HCl interferes with ionization. Finally, we demonstrate a unique feature of post-plasma chemical ionization for real-time flagging of matrix effects via monitoring reagent ions. These findings provide significant improvements of post-plasma chemical ionization for elemental F analysis, particularly for online chromatographic detection where solvent gradients are utilized.
more »
« less
- Award ID(s):
- 1904835
- PAR ID:
- 10406026
- Date Published:
- Journal Name:
- Journal of Analytical Atomic Spectrometry
- Volume:
- 38
- Issue:
- 4
- ISSN:
- 0267-9477
- Page Range / eLocation ID:
- 854 to 864
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The growing use of fluorochemicals has elevated the need for non-targeted detection of unknown fluorinated compounds and transformation products. Elemental mass spectrometry coupled to chromatography offers a facile approach for such analyses by using fluorine as an elemental tag. However, efficient ionization of fluorine has been an ongoing challenge. Here, we demonstrate a novel atmospheric-pressure elemental ionization method where fluorinated compounds separated by GC are converted to Na2F+ for non-targeted detection. The compounds are first introduced into a helium dielectric barrier discharge (DBD) for breakdown. The plasma products are subsequently ionized by interaction with a nano-ESI plume of sodium-containing aqueous electrolytes. Our studies point to HF as the main plasma product contributing to Na2F+ formation. Moreover, the results reveal that Na2F+ is largely formed by the ion-neutral reaction between HF and Na2A(NaA)n+, gas-phase reagent ions produced by nano-ESI where A represents the anion of the electrolyte. Near-uniform fluorine response factors are obtained for a wide range of compounds, highlighting good efficiency of HF formation by DBD regardless of chemical structure of the compounds. Detection limits of 3.5 to 19.4 pg fluorine on-column are obtained using the reported GC-DBD-nano-ESI-MS. As an example of non-targeted screening, extractions from oil-and-water-repellent fabrics are analyzed via monitoring Na2F+, resulting in detection of a fluorinated compound on a clothing item. Notably, facile switching of the ion source to atmospheric-pressure chemical ionization with the exact same chromatographic method allows identification of the detected compound at the flagged retention time.more » « less
-
Reactive organic carbon (ROC) is diverse in its speciation, functionalization, and volatility, with varying implications for ozone production and secondary organic aerosol formation and growth. Chemical ionization mass spectrometry (CIMS) approaches can provide in situ ROC observations, and the CIMS reagent ion controls the detectable ROC species. To expand the range of detectable ROC, we describe a method for switching between the reagent ions NH4+ and H3O+ in a Vocus chemical ionization time-of-flight mass spectrometer (Vocus-CI-ToFMS). We describe optimization of ion–molecule reactor conditions for both reagent ions, at the same temperature, and compare the ability of NH4+ and H3O+ to detect a variety of volatile organic compounds (VOCs) and semi-volatile and intermediate-volatility organic compounds (SVOCs and IVOCs), including oxygenates and organic sulfur compounds. Sensitivities are comparable to other similar instruments (up to ∼5 counts /s /pptv), with detection limits on the order of 1–10 s of pptv (1 s integration time). We report a method for characterizing and filtering periods of hysteresis following each reagent ion switch and compare use of reagent ions, persistent ambient ions, and a deuterated internal standard for diagnosing this hysteresis. We deploy NH4+/H3O+ reagent ion switching in a rural pine forest in central Colorado, US, and use our ambient measurements to compare the capabilities of NH4+ and H3O+ in the same instrument, without interferences from variation in instrument and inlet designs. We find that H3O+ optimally detects reduced ROC species with high volatility, while NH4+ improves detection of functionalized ROC compounds, including organic nitrates and oxygenated SVOCs and IVOCs that are readily fragmented by H3O+.more » « less
-
RationaleThe developments of new ionization technologies based on processes previously unknown to mass spectrometry (MS) have gained significant momentum. Herein we address the importance of understanding these unique ionization processes, demonstrate the new capabilities currently unmet by other methods, and outline their considerable analytical potential. MethodsTheinletandvacuumionization methods of solvent‐assisted ionization (SAI), matrix‐assisted ionization (MAI), and laserspray ionization can be used with commercial and dedicated ion sources producing ions from atmospheric or vacuum conditions for analyses of a variety of materials including drugs, lipids, and proteins introduced from well plates, pipet tips and plate surfaces with and without a laser using solid or solvent matrices. Mass spectrometers from various vendors are employed. ResultsResults are presented highlighting strengths relative to ionization methods of electrospray ionization (ESI) and matrix‐assisted laser desorption/ionization. We demonstrate the utility of multi‐ionization platforms encompassing MAI, SAI, and ESI and enabling detection of what otherwise is missed, especially when directly analyzing mixtures. Unmatched robustness is achieved with dedicated vacuum MAI sources with mechanical introduction of the sample to the sub‐atmospheric pressure (vacuumMAI). Simplicity and use of a wide array of matrices are attained using a conduit (inletionization), preferably heated, with sample introduction from atmospheric pressure. Tissue, whole blood, urine (including mouse, chicken, and human origin), bacteria strains and chemical on‐probe reactions are analyzed directly and, especially in the case ofvacuumionization, without concern of carryover or instrument contamination. ConclusionsExamples are provided highlighting the exceptional analytical capabilities associated with the novel ionization processes in MS that reduce operational complexity while increasing speed and robustness, achieving mass spectra with low background for improved sensitivity, suggesting the potential of this simple ionization technology to drive MS into areas currently underserved, such as clinical and medical applications.more » « less
-
In the present work, a novel workflow for the detection of both elemental and organic constituents of the firearm discharge residue from skin swabs was developed using trapped ion mobility spectrometry coupled to mass spectrometry. The small sample size (<10 μL), high specificity and short analysis time (few min) permits the detection of inorganic residues (IGSR; inorganic gunshot residues) and organic residues (OGSR) from one sample and in a single analysis. The analytical method is based on the simultaneous extraction of inorganic and organic species assisted by the formation organometallic complexes ( e.g. , 15–5 crown ethers for the sequestering of metals and nitrate species), followed by fast, post-ionization, high resolution mobility ( R IMS ∼ 150–250) and mass separations ( R MS ∼ 20–40k) with isotopic pattern recognition. The analytical performance is illustrated as a proof of concept for the case of the simultaneous detection of Ba +2 , Pb +2 , Cu + , K + , NO 3 − , diphenylamine (DPA), ethyl centralite (EC) and 2,4 dinitrotoluene (DNT) in positive and negative nESI-TIMS-MS modes. Candidate structures are proposed and collisional cross sections are reported for all organic and organometallic species of interest.more » « less
An official website of the United States government

