The Unique Games Conjecture has pinned down the approximability of all constraint satisfaction problems (CSPs), showing that a natural semidefinite programming relaxation offers the optimal worst-case approximation ratio for any CSP. This elegant picture, however, does not apply for CSP instances that are perfectly satisfiable, due to the imperfect completeness inherent in the Unique Games Conjecture. This work is motivated by the pursuit of a better understanding of the approximability of perfectly satisfiable instances of CSPs. We prove that an “almost Unique” version of Label Cover can be approximated within a constant factor on satisfiable instances. Our main conceptual contribution is the formulation of a (hypergraph) version of Label Cover that we call V Label Cover . Assuming a conjecture concerning the inapproximability of V Label Cover on perfectly satisfiable instances, we prove the following implications: • There is an absolute constant c 0 such that for k ≥ 3, given a satisfiable instance of Boolean k -CSP, it is hard to find an assignment satisfying more than c 0 k 2 /2 k fraction of the constraints. • Given a k -uniform hypergraph, k ≥ 2, for all ε > 0, it is hard to tell if it is q -strongly colorable or has no independent set with an ε fraction of vertices, where q =⌈ k +√ k -1/2⌉. • Given a k -uniform hypergraph, k ≥ 3, for all ε > 0, it is hard to tell if it is ( k -1)-rainbow colorable or has no independent set with an ε fraction of vertices.
more »
« less
On rich $2$-to-$1$ games
We propose a variant of the 2-to-1 Games Conjecture that we call the Rich 2-to-1 Games Conjecture and show that it is equivalent to the Unique Games Conjecture. We are motivated by two considerations. Firstly, in light of the recent proof of the 2-to-1 Games Conjecture, we hope to understand how one might make further progress towards a proof of the Unique Games Conjecture. Secondly, the new variant along with perfect completeness in addition, might imply hardness of approximation results that necessarily require perfect completeness and (hence) are not implied by the Unique Games Conjecture.
more »
« less
- Award ID(s):
- 1900460
- PAR ID:
- 10169213
- Date Published:
- Journal Name:
- Electronic colloquium on computational complexity
- Volume:
- 141
- ISSN:
- 1433-8092
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Using the calculus of variations, we prove the following structure theorem for noise-stable partitions: a partition of n -dimensional Euclidean space into m disjoint sets of fixed Gaussian volumes that maximise their noise stability must be $(m-1)$ -dimensional, if $$m-1\leq n$$ . In particular, the maximum noise stability of a partition of m sets in $$\mathbb {R}^{n}$$ of fixed Gaussian volumes is constant for all n satisfying $$n\geq m-1$$ . From this result, we obtain: (i) A proof of the plurality is stablest conjecture for three candidate elections, for all correlation parameters $$\rho $$ satisfying $$0<\rho <\rho _{0}$$ , where $$\rho _{0}>0$$ is a fixed constant (that does not depend on the dimension n ), when each candidate has an equal chance of winning. (ii) A variational proof of Borell’s inequality (corresponding to the case $m=2$ ). The structure theorem answers a question of De–Mossel–Neeman and of Ghazi–Kamath–Raghavendra. Item (i) is the first proof of any case of the plurality is stablest conjecture of Khot-Kindler-Mossel-O’Donnell for fixed $$\rho $$ , with the case $$\rho \to L1^{-}$$ being solved recently. Item (i) is also the first evidence for the optimality of the Frieze–Jerrum semidefinite program for solving MAX-3-CUT, assuming the unique games conjecture. Without the assumption that each candidate has an equal chance of winning in (i), the plurality is stablest conjecture is known to be false.more » « less
-
Higher order random walks (HD-walks) on high dimensional expanders (HDX) have seen an incredible amount of study and application since their introduction by Kaufman and Mass (ITCS 2016), yet their broader combinatorial and spectral properties remain poorly understood. We develop a combinatorial characterization of the spectral structure of HD-walks on two-sided local-spectral expanders (Dinur and Kaufman FOCS 2017), which offer a broad generalization of the well-studied Johnson and Grassmann graphs. Our characterization, which shows that the spectra of HD-walks lie tightly concentrated in a few combinatorially structured strips, leads to novel structural theorems such as a tight ℓ2-characterization of edge-expansion, as well as to a new understanding of local-to-global graph algorithms on HDX. Towards the latter, we introduce a novel spectral complexity measure called Stripped Threshold Rank, and show how it can replace the (much larger) threshold rank as a parameter controlling the performance of algorithms on structured objects. Combined with a sum-of-squares proof for the former ℓ2-characterization, we give a concrete application of this framework to algorithms for unique games on HD-walks, where in many cases we improve the state of the art (Barak, Raghavendra, and Steurer FOCS 2011, and Arora, Barak, and Steurer JACM 2015) from nearly-exponential to polynomial time (e.g. for sparsifications of Johnson graphs or of slices of the q-ary hypercube). Our characterization of expansion also holds an interesting connection to hardness of approximation, where an ℓ∞-variant for the Grassmann graphs was recently used to resolve the 2-2 Games Conjecture (Khot, Minzer, and Safra FOCS 2018). We give a reduction from a related ℓ∞-variant to our ℓ2-characterization, but it loses factors in the regime of interest for hardness where the gap between ℓ2 and ℓ∞ structure is large. Nevertheless, our results open the door for further work on the use of HDX in hardness of approximation and their general relation to unique games.more » « less
-
We prove the endpoint case of a conjecture of Khot and Moshkovitz related to the unique games conjecture, less a small error. Letn ≥ 2. Suppose a subset Ω ofn‐dimensional Euclidean spacesatisfies −Ω = Ωcand Ω + v = Ωc(up to measure zero sets) for every standard basis vector. For anyand for anyq ≥ 1, letand let. For anyx ∈ ∂Ω, letN(x) denote the exterior normal vector atxsuch that ‖N(x)‖2 = 1. Let. Our main result shows thatBhas the smallest Gaussian surface area among all such subsets Ω, less a small error:In particular,Standard arguments extend these results to a corresponding weak inequality for noise stability. Removing the factor 6 × 10−9would prove the endpoint case of the Khot‐Moshkovitz conjecture. Lastly, we prove a Euclidean analogue of the Khot and Moshkovitz conjecture. The full conjecture of Khot and Moshkovitz provides strong evidence for the truth of the unique games conjecture, a central conjecture in theoretical computer science that is closely related to the P versus NP problem. So, our results also provide evidence for the truth of the unique games conjecture. Nevertheless, this paper does not prove any case of the unique games conjecture.more » « less
-
Abstract The entropic doubling of a random variable taking values in an abelian group is a variant of the notion of the doubling constant of a finite subset of , but it enjoys somewhat better properties; for instance, it contracts upon applying a homomorphism. In this paper we develop further the theory of entropic doubling and give various applications, including: (1) A new proof of a result of Pálvölgyi and Zhelezov on the “skew dimension” of subsets of with small doubling; (2) A new proof, and an improvement, of a result of the second author on the dimension of subsets of with small doubling; (3) A proof that the Polynomial Freiman–Ruzsa conjecture over implies the (weak) Polynomial Freiman–Ruzsa conjecture over .more » « less
An official website of the United States government

