skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Large-scale Canonical Polyadic Decomposition via Regular Tensor Sampling
Tensor decomposition models have proven to be effective analysis tools in various applications, including signal processing, machine learning, and communications, to name a few. Canonical polyadic decomposition (CPD) is a very popular model, which decomposes a higher order tensor signal into a sum of rank 1 terms. However, when the tensor size gets big, computing the CPD becomes a lot more challenging. Previous works proposed using random (generalized) tensor sampling or compression to alleviate this challenge. In this work, we propose using a regular tensor sampling framework instead. We show that by appropriately selecting the sampling mechanism, we can simultaneously control memory and computational complexity, while guaranteeing identifiability at the same time. Numerical experiments with synthetic and real data showcase the effectiveness of our approach.  more » « less
Award ID(s):
1704074
PAR ID:
10169268
Author(s) / Creator(s):
;
Date Published:
Journal Name:
27th European Signal Processing Conference (EUSIPCO), A Coruna, Spain, 2019
Page Range / eLocation ID:
1 to 5
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This work focuses on canonical polyadic decomposition (CPD) for large-scale tensors. Many prior works rely on data sparsity to develop scalable CPD algorithms, which are not suitable for handling dense tensor, while dense tensors often arise in applications such as image and video processing. As an alternative, stochastic algorithms utilize data sampling to reduce per-iteration complexity and thus are very scalable, even when handling dense tensors. However, existing stochastic CPD algorithms are facing some challenges. For example, some algorithms are based on randomly sampled tensor entries, and thus each iteration can only updates a small portion of the latent factors. This may result in slow improvement of the estimation accuracy of the latent factors. In addition, the convergence properties of many stochastic CPD algorithms are unclear, perhaps because CPD poses a hard nonconvex problem and is challenging for analysis under stochastic settings. In this work, we propose a stochastic optimization strategy that can effectively circumvent the above challenges. The proposed algorithm updates a whole latent factor at each iteration using sampled fibers of a tensor, which can quickly increase the estimation accuracy. The algorithm is flexible-many commonly used regularizers and constraints can be easily incorporated in the computational framework. The algorithm is also backed by a rigorous convergence theory. Simulations on large-scale dense tensors are employed to showcase the effectiveness of the algorithm. 
    more » « less
  2. In various applications within signal processing, system identification, pattern recognition, and scientific computing, the canonical polyadic decomposition (CPD) of a higher-order tensor is only known via general linear measurements. In this paper, we show that the computation of such a CPD can be reformulated as a sum of CPDs with linearly constrained factor matrices by assuming that the measurement matrix can be approximated by a sum of a (small) number of Kronecker products. By properly exploiting the hypothesized structure, we can derive an efficient non-linear least squares algorithm, allowing us to tackle large-scale problems. 
    more » « less
  3. null (Ed.)
    Canonical polyadic decomposition (CPD) has been a workhorse for multimodal data analytics. This work puts forth a stochastic algorithmic framework for CPD under β-divergence, which is well-motivated in statistical learning—where the Euclidean distance is typically not preferred. Despite the existence of a series of prior works addressing this topic, pressing computational and theoretical challenges, e.g., scalability and convergence issues, still remain. In this paper, a unified stochastic mirror descent framework is developed for large-scale β-divergence CPD. Our key contribution is the integrated design of a tensor fiber sampling strategy and a flexible stochastic Bregman divergence-based mirror descent iterative procedure, which significantly reduces the computation and memory cost per iteration for various β. Leveraging the fiber sampling scheme and the multilinear algebraic structure of low-rank tensors, the proposed lightweight algorithm also ensures global convergence to a stationary point under mild conditions. Numerical results on synthetic and real data show that our framework attains significant computational saving compared with state-of-the-art methods. 
    more » « less
  4. Abstract Tensor decompositions have proven to be effective in analyzing the structure of multidimensional data. However, most of these methods require a key parameter: the number of desired components. In the case of the CANDECOMP/PARAFAC decomposition (CPD), the ideal value for the number of components is known as the canonical rank and greatly affects the quality of the decomposition results. Existing methods use heuristics or Bayesian methods to estimate this value by repeatedly calculating the CPD, making them extremely computationally expensive. In this work, we proposeFRAPPE, the first method to estimate the canonical rank of a tensor without having to compute the CPD. This method is the result of two key ideas. First, it is much cheaper to generate synthetic data with known rank compared to computing the CPD. Second, we can greatly improve the generalization ability and speed of our model by generating synthetic data that matches a given input tensor in terms of size and sparsity. We can then train a specialized single-use regression model on a synthetic set of tensors engineered to match a given input tensor and use that to estimate the canonical rank of the tensor—all without computing the expensive CPD.FRAPPEis over$$24\times $$ 24 × faster than the best-performing baseline, and exhibits a$$10\%$$ 10 % improvement in MAPE on a synthetic dataset. It also performs as well as or better than the baselines on real-world datasets. 
    more » « less
  5. Tensors are used by a wide variety of applications to represent multi-dimensional data; tensor decompositions are a class of methods for latent data analytics, data compression, and so on. Many of these applications generate large tensors with irregular dimension sizes and nonzero distribution. CANDECOMP/PARAFAC decomposition (Cpd) is a popular low-rank tensor decomposition for discovering latent features. The increasing overhead on memory and execution time ofCpdfor large tensors requires distributed memory implementations as the only feasible solution. The sparsity and irregularity of tensors hinder the improvement of performance and scalability of distributed memory implementations. While previous works have been proved successful inCpdfor tensors with relatively regular dimension sizes and nonzero distribution, they either deliver unsatisfactory performance and scalability for irregular tensors or require significant time overhead in preprocessing. In this work, we focus on medium-grained tensor distribution to address their limitation for irregular tensors. We first thoroughly investigate through theoretical and experimental analysis. We disclose that the main cause of poorCpdperformance and scalability is the imbalance of multiple types of computations and communications and their tradeoffs; and sparsity and irregularity make it challenging to achieve their balances and tradeoffs. Irregularity of a sparse tensor is categorized based on two aspects: very different dimension sizes and a non-uniform nonzero distribution. Typically, focusing on optimizing one type of load imbalance causes other ones more severe for irregular tensors. To address such challenges, we propose irregularity-aware distributedCpdthat leverages the sparsity and irregularity information to identify the best tradeoff between different imbalances with low time overhead. We materialize the idea with two optimization methods: the prediction-based grid configuration and matrix-oriented distribution policy, where the former forms the global balance among computations and communications, and the latter further adjusts the balances among computations. The experimental results show that our proposed irregularity-aware distributedCpdis more scalable and outperforms the medium- and fine-grained distributed implementations by up to 4.4 × and 11.4 × on 1,536 processors, respectively. Our optimizations support different sparse tensor formats, such as compressed sparse fiber (CSF), coordinate (COO), and Hierarchical Coordinate (HiCOO), and gain good scalability for all of them. 
    more » « less