Abstract The generalized semiparametric mixed varying‐coefficient effects model for longitudinal data can accommodate a variety of link functions and flexibly model different types of covariate effects, including time‐constant, time‐varying and covariate‐varying effects. The time‐varying effects are unspecified functions of time and the covariate‐varying effects are nonparametric functions of a possibly time‐dependent exposure variable. A semiparametric estimation procedure is developed that uses local linear smoothing and profile weighted least squares, which requires smoothing in the two different and yet connected domains of time and the time‐dependent exposure variable. The asymptotic properties of the estimators of both nonparametric and parametric effects are investigated. In addition, hypothesis testing procedures are developed to examine the covariate effects. The finite‐sample properties of the proposed estimators and testing procedures are examined through simulations, indicating satisfactory performances. The proposed methods are applied to analyze the AIDS Clinical Trial Group 244 clinical trial to investigate the effects of antiretroviral treatment switching in HIV‐infected patients before and after developing the T215Y antiretroviral drug resistance mutation.The Canadian Journal of Statistics47: 352–373; 2019 © 2019 Statistical Society of Canada
more »
« less
Analysis of the time-varying Cox model for the cause-specific hazard functions with missing causes
This paper studies theCox model with time-varying coefficients for cause-specific hazard functions when the causes of failure are subject to missingness. Inverse probability weighted and augmented inverse probability weighted estimators are investigated. The latter is considered as a two-stage estimator by directly utilizing the inverse probability weighted estimator and through modeling available auxiliary variables to improve efficiency. The asymptotic properties of the two estimators are investigated. Hypothesis testing procedures are developed to test the null hypotheses that the covariate effects are zero and that the covariate effects are constant. We conduct simulation studies to examine the finite sample properties of the proposed estimation and hypothesis testing procedures under various settings of the auxiliary variables and the percentages of the failure causes that are missing. These simulation results demonstrate that the augmented inverse probability weighted estimators are more efficient than the inverse probability weighted estimators and that the proposed testing procedures have the expected satisfactory results in sizes and powers. The proposed methods are illustrated using the Mashi clinical trial data for investigating the effect of randomization to formula-feeding versus breastfeeding plus extended infant zidovudine prophylaxis on death due to mother-to-child HIV transmission in Botswana.
more »
« less
- PAR ID:
- 10169492
- Date Published:
- Journal Name:
- Lifetime Data Analysis
- ISSN:
- 1380-7870
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract This article presents generalized semiparametric regression models for conditional cumulative incidence functions with competing risks data when covariates are missing by sampling design or happenstance. A doubly robust augmented inverse probability weighted (AIPW) complete‐case approach to estimation and inference is investigated. This approach modifies IPW complete‐case estimating equations by exploiting the key features in the relationship between the missing covariates and the phase‐one data to improve efficiency. An iterative numerical procedure is derived to solve the nonlinear estimating equations. The asymptotic properties of the proposed estimators are established. A simulation study examining the finite‐sample performances of the proposed estimators shows that the AIPW estimators are more efficient than the IPW estimators. The developed method is applied to the RV144 HIV‐1 vaccine efficacy trial to investigate vaccine‐induced IgG binding antibodies to HIV‐1 as correlates of acquisition of HIV‐1 infection while taking account of whether the HIV‐1 sequences are near or far from the HIV‐1 sequences represented in the vaccine construct.more » « less
-
Summary Quantile regression has become a widely used tool for analysing competing risk data. However, quantile regression for competing risk data with a continuous mark is still scarce. The mark variable is an extension of cause of failure in a classical competing risk model where cause of failure is replaced by a continuous mark only observed at uncensored failure times. An example of the continuous mark variable is the genetic distance that measures dissimilarity between the infecting virus and the virus contained in the vaccine construct. In this article, we propose a novel mark-specific quantile regression model. The proposed estimation method borrows strength from data in a neighbourhood of a mark and is based on an induced smoothed estimation equation, which is very different from the existing methods for competing risk data with discrete causes. The asymptotic properties of the resulting estimators are established across mark and quantile continuums. In addition, a mark-specific quantile-type vaccine efficacy is proposed and its statistical inference procedures are developed. Simulation studies are conducted to evaluate the finite sample performances of the proposed estimation and hypothesis testing procedures. An application to the first HIV vaccine efficacy trial is provided.more » « less
-
This paper studies inference in randomized controlled trials with covariate‐adaptive randomization when there are multiple treatments. More specifically, we study in this setting inference about the average effect of one or more treatments relative to other treatments or a control. As in Bugni, Canay, and Shaikh (2018), covariate‐adaptive randomization refers to randomization schemes that first stratify according to baseline covariates and then assign treatment status so as to achieve “balance” within each stratum. Importantly, in contrast to Bugni, Canay, and Shaikh (2018), we not only allow for multiple treatments, but further allow for the proportion of units being assigned to each of the treatments to vary across strata. We first study the properties of estimators derived from a “fully saturated” linear regression, that is, a linear regression of the outcome on all interactions between indicators for each of the treatments and indicators for each of the strata. We show that tests based on these estimators using the usual heteroskedasticity‐consistent estimator of the asymptotic variance are invalid in the sense that they may have limiting rejection probability under the null hypothesis strictly greater than the nominal level; on the other hand, tests based on these estimators and suitable estimators of the asymptotic variance that we provide are exact in the sense that they have limiting rejection probability under the null hypothesis equal to the nominal level. For the special case in which the target proportion of units being assigned to each of the treatments does not vary across strata, we additionally consider tests based on estimators derived from a linear regression with “strata fixed effects,” that is, a linear regression of the outcome on indicators for each of the treatments and indicators for each of the strata. We show that tests based on these estimators using the usual heteroskedasticity‐consistent estimator of the asymptotic variance are conservative in the sense that they have limiting rejection probability under the null hypothesis no greater than and typically strictly less than the nominal level, but tests based on these estimators and suitable estimators of the asymptotic variance that we provide are exact, thereby generalizing results in Bugni, Canay, and Shaikh (2018) for the case of a single treatment to multiple treatments. A simulation study and an empirical application illustrate the practical relevance of our theoretical results.more » « less
-
Abstract Analysis of non-probability survey samples requires auxiliary information at the population level. Such information may also be obtained from an existing probability survey sample from the same finite population. Mass imputation has been used in practice for combining non-probability and probability survey samples and making inferences on the parameters of interest using the information collected only in the non-probability sample for the study variables. Under the assumption that the conditional mean function from the non-probability sample can be transported to the probability sample, we establish the consistency of the mass imputation estimator and derive its asymptotic variance formula. Variance estimators are developed using either linearization or bootstrap. Finite sample performances of the mass imputation estimator are investigated through simulation studies. We also address important practical issues of the method through the analysis of a real-world non-probability survey sample collected by the Pew Research Centre.more » « less
An official website of the United States government

