skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Analysis of the time-varying Cox model for the cause-specific hazard functions with missing causes
This paper studies theCox model with time-varying coefficients for cause-specific hazard functions when the causes of failure are subject to missingness. Inverse probability weighted and augmented inverse probability weighted estimators are investigated. The latter is considered as a two-stage estimator by directly utilizing the inverse probability weighted estimator and through modeling available auxiliary variables to improve efficiency. The asymptotic properties of the two estimators are investigated. Hypothesis testing procedures are developed to test the null hypotheses that the covariate effects are zero and that the covariate effects are constant. We conduct simulation studies to examine the finite sample properties of the proposed estimation and hypothesis testing procedures under various settings of the auxiliary variables and the percentages of the failure causes that are missing. These simulation results demonstrate that the augmented inverse probability weighted estimators are more efficient than the inverse probability weighted estimators and that the proposed testing procedures have the expected satisfactory results in sizes and powers. The proposed methods are illustrated using the Mashi clinical trial data for investigating the effect of randomization to formula-feeding versus breastfeeding plus extended infant zidovudine prophylaxis on death due to mother-to-child HIV transmission in Botswana.  more » « less
Award ID(s):
1915829 1513072
NSF-PAR ID:
10169492
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Lifetime Data Analysis
ISSN:
1380-7870
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    The generalized semiparametric mixed varying‐coefficient effects model for longitudinal data can accommodate a variety of link functions and flexibly model different types of covariate effects, including time‐constant, time‐varying and covariate‐varying effects. The time‐varying effects are unspecified functions of time and the covariate‐varying effects are nonparametric functions of a possibly time‐dependent exposure variable. A semiparametric estimation procedure is developed that uses local linear smoothing and profile weighted least squares, which requires smoothing in the two different and yet connected domains of time and the time‐dependent exposure variable. The asymptotic properties of the estimators of both nonparametric and parametric effects are investigated. In addition, hypothesis testing procedures are developed to examine the covariate effects. The finite‐sample properties of the proposed estimators and testing procedures are examined through simulations, indicating satisfactory performances. The proposed methods are applied to analyze the AIDS Clinical Trial Group 244 clinical trial to investigate the effects of antiretroviral treatment switching in HIV‐infected patients before and after developing the T215Y antiretroviral drug resistance mutation.The Canadian Journal of Statistics47: 352–373; 2019 © 2019 Statistical Society of Canada

     
    more » « less
  2. Personalized optimal decision making, finding the optimal decision rule (ODR) based on individual characteristics, has attracted increasing attention recently in many fields, such as education, economics, and medicine. Current ODR methods usually require the primary outcome of interest in samples for assessing treatment effects, namely, the experimental sample. However, in many studies, treatments may have a long‐term effect, and as such, the primary outcome of interest cannot be observed in the experimental sample due to the limited duration of experiments, which makes the estimation of ODR impossible. This paper is inspired to address this challenge by making use of an auxiliary sample to facilitate the estimation of ODR in the experimental sample. We propose an auGmented inverse propensity weighted Experimental and Auxiliary sample‐based decision Rule (GEAR) by maximizing the augmented inverse propensity weighted value estimator over a class of decision rules using the experimental sample, with the primary outcome being imputed based on the auxiliary sample. The asymptotic properties of the proposed GEAR estimators and their associated value estimators are established. Simulation studies are conducted to demonstrate its empirical validity with a real AIDS application.

     
    more » « less
  3. The case-cohort design is a commonly used cost-effective sampling strategy for large cohort studies, where some covariates are expensive to measure or obtain. In this paper, we consider regression analysis under a case-cohort study with interval-censored failure time data, where the failure time is only known to fall within an interval instead of being exactly observed. A common approach to analyzing data from a case-cohort study is the inverse probability weighting approach, where only subjects in the case-cohort sample are used in estimation, and the subjects are weighted based on the probability of inclusion into the case-cohort sample. This approach, though consistent, is generally inefficient as it does not incorporate information outside the case-cohort sample. To improve efficiency, we first develop a sieve maximum weighted likelihood estimator under the Cox model based on the case-cohort sample and then propose a procedure to update this estimator by using information in the full cohort. We show that the update estimator is consistent, asymptotically normal, and at least as efficient as the original estimator. The proposed method can flexibly incorporate auxiliary variables to improve estimation efficiency. A weighted bootstrap procedure is employed for variance estimation. Simulation results indicate that the proposed method works well in practical situations. An application to a Phase 3 HIV vaccine efficacy trial is provided for illustration.

     
    more » « less
  4. Abstract

    Estimating population‐level effects of a vaccine is challenging because there may be interference, that is, the outcome of one individual may depend on the vaccination status of another individual. Partial interference occurs when individuals can be partitioned into groups such that interference occurs only within groups. In the absence of interference, inverse probability weighted (IPW) estimators are commonly used to draw inference about causal effects of an exposure or treatment. Tchetgen Tchetgen and VanderWeele proposed a modified IPW estimator for causal effects in the presence of partial interference. Motivated by a cholera vaccine study in Bangladesh, this paper considers an extension of the Tchetgen Tchetgen and VanderWeele IPW estimator to the setting where the outcome is subject to right censoring using inverse probability of censoring weights (IPCW). Censoring weights are estimated using proportional hazards frailty models. The large sample properties of the IPCW estimators are derived, and simulation studies are presented demonstrating the estimators' performance in finite samples. The methods are then used to analyze data from the cholera vaccine study.

     
    more » « less
  5. Summary

    This article investigates a generalized semiparametric varying-coefficient model for longitudinal data that can flexibly model three types of covariate effects: time-constant effects, time-varying effects, and covariate-varying effects. Different link functions can be selected to provide a rich family of models for longitudinal data. The model assumes that the time-varying effects are unspecified functions of time and the covariate-varying effects are parametric functions of an exposure variable specified up to a finite number of unknown parameters. The estimation procedure is developed using local linear smoothing and profile weighted least squares estimation techniques. Hypothesis testing procedures are developed to test the parametric functions of the covariate-varying effects. The asymptotic distributions of the proposed estimators are established. A working formula for bandwidth selection is discussed and examined through simulations. Our simulation study shows that the proposed methods have satisfactory finite sample performance. The proposed methods are applied to the ACTG 244 clinical trial of HIV infected patients being treated with Zidovudine to examine the effects of antiretroviral treatment switching before and after HIV develops the T215Y/F drug resistance mutation. Our analysis shows benefits of treatment switching to the combination therapies as compared to continuing with ZDV monotherapy before and after developing the 215-mutation.

     
    more » « less