skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Multi-Step Online Unsupervised Domain Adaptation
In this paper, we address the Online Unsupervised Domain Adapta- tion (OUDA) problem, where the target data are unlabelled and ar- riving sequentially. The traditional methods on the OUDA problem mainly focus on transforming each arriving target data to the source domain, and they do not sufficiently consider the temporal coherency and accumulative statistics among the arriving target data. We pro- pose a multi-step framework for the OUDA problem, which insti- tutes a novel method to compute the mean-target subspace inspired by the geometrical interpretation on the Euclidean space. This mean- target subspace contains accumulative temporal information among the arrived target data. Moreover, the transformation matrix com- puted from the mean-target subspace is applied to the next target data as a preprocessing step, aligning the target data closer to the source domain. Experiments on four datasets demonstrated the con- tribution of each step in our proposed multi-step OUDA framework and its performance over previous approaches.  more » « less
Award ID(s):
1813935
PAR ID:
10169634
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
2020 IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
Page Range / eLocation ID:
41172 to 41576
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We consider the problem of answering temporal queries on RDF stores, in presence of atemporal RDFS domain ontologies, of relational data sources that include temporal information, and of rules that map the domain information in the source schemas into the target ontology. Our proposed practice-oriented solution consists of two rule-based domain-independent algorithms. The first algorithm materializes target RDF data via a version of data exchange that enriches both the data and the ontology with temporal information from the relational sources. The second algorithm accepts as inputs temporal queries expressed in terms of the domain ontology using a lightweight temporal extension of SPARQL, and ensures successful evaluation of the queries on the materialized temporally-enriched RDF data. To study the quality of the information generated by the algorithms, we develop a general framework that formalizes the relational-to-RDF temporal data-exchange problem. The framework includes a chase formalism and a formal solution for the problem of answering temporal queries in the context of relational-to-RDF temporal data exchange. In this article, we present the algorithms and the formal framework that proves correctness of the information output by the algorithms, and also report on the algorithm implementation and experimental results for two application domains. 
    more » « less
  2. null (Ed.)
    Human activity recognition (HAR) from wearable sensors data has become ubiquitous due to the widespread proliferation of IoT and wearable devices. However, recognizing human activity in heterogeneous environments, for example, with sensors of different models and make, across different persons and their on-body sensor placements introduces wide range discrepancies in the data distributions, and therefore, leads to an increased error margin. Transductive transfer learning techniques such as domain adaptation have been quite successful in mitigating the domain discrepancies between the source and target domain distributions without the costly target domain data annotations. However, little exploration has been done when multiple distinct source domains are present, and the optimum mapping to the target domain from each source is not apparent. In this paper, we propose a deep Multi-Source Adversarial Domain Adaptation (MSADA) framework that opportunistically helps select the most relevant feature representations from multiple source domains and establish such mappings to the target domain by learning the perplexity scores. We showcase that the learned mappings can actually reflect our prior knowledge on the semantic relationships between the domains, indicating that MSADA can be employed as a powerful tool for exploratory activity data analysis. We empirically demonstrate that our proposed multi-source domain adaptation approach achieves 2% improvement with OPPORTUNITY dataset (cross-person heterogeneity, 4 ADLs), whereas 13% improvement on DSADS dataset (cross-position heterogeneity, 10 ADLs and sports activities). 
    more » « less
  3. Domain generalization (DG) aims to incorporate knowledge from multiple source domains into a single model that could generalize well on unseen target domains. This problem is ubiquitous in practice since the distributions of the target data may rarely be identical to those of the source data. In this paper, we propose Multidomain Discriminant Analysis (MDA) to address DG of classification tasks in general situations. MDA learns a domain-invariant feature transformation that aims to achieve appealing properties, including a minimal divergence among domains within each class, a maximal separability among classes, and overall maximal compactness of all classes. Furthermore, we provide the bounds on excess risk and generalization error by learning theory analysis. Comprehensive experiments on synthetic and real benchmark datasets demonstrate the effectiveness of MDA. 
    more » « less
  4. The goal of domain adaptation is to train a high-performance predictive model on the target domain data by using knowledge from the source domain data, which has different but related data distribution. In this paper, we consider unsupervised domain adaptation where we have labelled source domain data but unlabelled target domain data. Our solution to unsupervised domain adaptation is to learn a domain- invariant representation that is also category discriminative. Domain- invariant representations are realized by minimizing the domain discrepancy. To minimize the domain discrepancy, we propose a novel graph- matching metric between the source and target domain representations. Minimizing this metric allows the source and target representations to be in support of each other. We further exploit confident unlabelled target domain samples and their pseudo-labels to refine our proposed model. We expect the refining step to improve the performance further. This is validated by performing experiments on standard image classification adaptation datasets. Results showed our proposed approach out-perform previous domain-invariant representation learning approaches. 
    more » « less
  5. NA (Ed.)
    Conventional Multi-Agent Path Finding (MAPF) problems aim to compute an ensemble of collision-free paths for multiple agents from their respective starting locations to pre-allocated destinations. This work considers a generalized version of MAPF called Multi-Agent Combinatorial Path Finding (MCPF) where agents must collectively visit a large number of intermediate target locations along their paths before arriving at destinations. This problem involves not only planning collisionfree paths for multiple agents but also assigning targets and specifying the visiting order for each agent (i.e. multi-target sequencing). To solve the problem, we leverage the well-known Conflict-Based Search (CBS) for MAPF and propose a novel framework called Conflict-Based Steiner Search (CBSS). CBSS interleaves (1) the conflict resolving strategy in CBS to bypass the curse of dimensionality in MAPF and (2) multiple traveling salesman algorithms to handle the combinatorics in multi-target sequencing, to compute optimal or bounded sub-optimal paths for agents while visiting all the targets. Our extensive tests verify the advantage of CBSS over baseline approaches in terms of computing shorter paths and improving success rates within a runtime limit for up to 20 agents and 50 targets. We also evaluate CBSS with several MCPF variants, which demonstrates the generality of our problem formulation and the CBSS framework. 
    more » « less