skip to main content


Title: Topology optimization of tension-only cable nets under finite deformations
Structures containing tension-only members, i.e., cables, are widely used in engineered structures (e.g., suspension and cable-stayed bridges, tents, and bicycle wheels) and are also found in nature (e.g., spider webs). We seek to use the ground structure method to obtain optimal cable network configurations. The structures are modeled using principles of nonlinear elasticity that allow for large displacements, i.e., global configuration changes, and large deformations. The material is characterized by a hyperelastic constitutive relation in which the strain energy is nonzero only when the axial stretch of a member is greater than or equal to one (i.e., tension-only behavior). We maximize the stationary potential energy of the equilibrated system, which avoids the need for an additional adjoint equation in computing the derivatives needed for the solution of the optimization problem. Several examples demonstrate the capabilities of the proposed formulation for topology optimization of cable networks. Motivated by nature, a spider web–inspired cable net is designed.  more » « less
Award ID(s):
1663244
NSF-PAR ID:
10170740
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Structural and Multidisciplinary Optimization
ISSN:
1615-147X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Truss structures composed of members that work exclusively in tension or in compression appear in several problems of science and engineering, e.g., in the study of the resisting mechanisms of masonry structures, as well as in the design of spider web-inspired web structures. This work generalizes previous results on the existence of cable webs that are able to support assigned sets of nodal forces under tension. We extend such a problem to the limit analysis of compression-only “strut nets” subjected to fixed and variable nodal loads. These systems provide discrete element models of masonry bodies, which lie inside the polygon/polyhedron with vertices at the points of application of the given forces (“underlying masonry structures”). It is assumed that fixed nodal forces are combined with variable forces growing proportionally to a scalar multiplier (load multiplier), and that the supporting strut net is subjected to kinematic constraints at given nodal positions.

     
    more » « less
  2. Tensegrity robots, which are composed of compressive elements (rods) and flexible tensile elements (e.g., cables), have a variety of advantages, including flexibility, low weight, and resistance to mechanical impact. Nevertheless, the hybrid soft-rigid nature of these robots also complicates the ability to localize and track their state. This work aims to address what has been recognized as a grand challenge in this domain, i.e., the state estimation of tensegrity robots through a markerless, vision-based method, as well as novel, onboard sensors that can measure the length of the robot's cables. In particular, an iterative optimization process is proposed to track the 6-DoF pose of each rigid element of a tensegrity robot from an RGB-D video as well as endcap distance measurements from the cable sensors. To ensure that the pose estimates of rigid elements are physically feasible, i.e., they are not resulting in collisions between rods or with the environment, physical constraints are introduced during the optimization. Real-world experiments are performed with a 3-bar tensegrity robot, which performs locomotion gaits. Given ground truth data from a motion capture system, the proposed method achieves less than 1~cm translation error and 3 degrees rotation error, which significantly outperforms alternatives. At the same time, the approach can provide accurate pose estimation throughout the robot's motion, while motion capture often fails due to occlusions. 
    more » « less
  3. null (Ed.)
    Context. The excitation of the filamentary gas structures surrounding giant elliptical galaxies at the center of cool-core clusters, also known as brightest cluster galaxies (BCGs), is key to our understanding of active galactic nucleus (AGN) feedback, and of the impact of environmental and local effects on star formation. Aims. We investigate the contribution of thermal radiation from the cooling flow surrounding BCGs to the excitation of the filaments. We explore the effects of small levels of extra heating (turbulence), and of metallicity, on the optical and infrared lines. Methods. Using the C LOUDY code, we modeled the photoionization and photodissociation of a slab of gas of optical depth A V  ≤ 30 mag at constant pressure in order to calculate self-consistently all of the gas phases, from ionized gas to molecular gas. The ionizing source is the extreme ultraviolet (EUV) and soft X-ray radiation emitted by the cooling gas. We tested these models comparing their predictions to the rich multi-wavelength observations from optical to submillimeter, now achieved in cool core clusters. Results. Such models of self-irradiated clouds, when reaching sufficiently large A V , lead to a cloud structure with ionized, atomic, and molecular gas phases. These models reproduce most of the multi-wavelength spectra observed in the nebulae surrounding the BCGs, not only the low-ionization nuclear emission region like optical diagnostics, [O  III ] λ 5007 Å/H β , [N  II ] λ 6583 Å/H α , and ([S  II ] λ 6716 Å+[S  II ] λ 6731 Å)/H α , but also the infrared emission lines from the atomic gas. [O  I ] λ 6300 Å/H α , instead, is overestimated across the full parameter space, except for very low A V . The modeled ro-vibrational H 2 lines also match observations, which indicates that near- and mid-infrared H 2 lines are mostly excited by collisions between H 2 molecules and secondary electrons produced naturally inside the cloud by the interaction between the X-rays and the cold gas in the filament. However, there is still some tension between ionized and molecular line tracers (i.e., CO), which requires optimization of the cloud structure and the density of the molecular zone. The limited range of parameters over which predictions match observations allows us to constrain, in spite of degeneracies in the parameter space, the intensity of X-ray radiation bathing filaments, as well as some of their physical properties like A V or the level of turbulent heating rate. Conclusions. The reprocessing of the EUV and X-ray radiation from the plasma cooling is an important powering source of line emission from filaments surrounding BCGs. C LOUDY self-irradiated X-ray excitation models coupled with a small level of turbulent heating manage to simultaneously reproduce a large number of optical-to-infrared line ratios when all the gas phases (from ionized to molecular) are modeled self-consistently. Releasing some of the simplifications of our model, like the constant pressure, or adding the radiation fields from the AGN and stars, as well as a combination of matter- and radiation-bounded cloud distribution, should improve the predictions of line emission from the different gas phases. 
    more » « less
  4. Abstract Based on observations from nature, tails are believed to help animals achieve highly agile motions. Traditional single-link robotic tails serve as a good simplification for both modeling and implementation purposes. However, this approach cannot explain the complicated tail behaviors exhibited in nature where multi-link structures are more commonly observed. Unlike its single-link counterpart, articulated multi-link tails essentially belong to the serial manipulator family which possesses special motion transmission design challenges. To address this challenge, a cable-driven hyper-redundant design becomes the most used approach. Limited by cable strength and elastic components, this approach suffers from low-frequency response, inadequate generated inertial loading, and fragile hardware, which are all critical drawbacks for robotic tails design. To solve these structure-related shortcomings, a multi-link robotic tail made up of rigid links is proposed in this paper. The new structure takes advantage of the traditional hybrid mechanism architecture, but utilizes rigid mechanisms to couple the motions between the ith link and the (i + 1)th link rather than using cable actuation. By doing so, the overall tail becomes a rigid mechanism that achieves quasi-uniform spatial bending for each segment and allows performing highly dynamic motions. The mechanism and detailed design of this new robotic tail are presented. The kinematic model was developed and an optimization process was conducted to reduce the bending non-uniformity for the rigid tail. Based on this special optimization design, the dynamic model of the new mechanism is significantly simplified. A small-scale three-segment prototype was integrated to verify the proposed mechanism's unique mobility. 
    more » « less
  5. null (Ed.)
    Abstract

    Mobile Cable-Driven Parallel Manipulators (m-CDPM) are a sub-class of CDPM with greater-capabilities (antagonistic cable-tensioning and reconfigurability) by virtue of mobility of the base-winches. In past work, we had also explored creation of adjustable spring-stiffness modules, in-line with cables, which decouple cable-stiffness and cable-tensions. All these internal-freedoms allow an m-CDPM to track desired trajectories while equilibrating end-effector wrenches and improving lateral disturbance-rejection. However, parameter and configuration selection is key to unlocking these benefits.

    To this end, we consider an approach to partition task-execution into a primary (fast) winch-tension control and secondary (slow) reconfiguration and joint-stiffness modulation. This would enable a primary trajectory-tracking task together with secondary task-space stiffness tailoring, using system-reconfiguration and joint-stiffness modulation. In this paper, we limit our scope to feasibility-evaluation to achieve the stiffness modulation as a secondary goal within an offline design-optimization setting (but with an eye towards real-time implementation).

    These aspects are illustrated in the context of a 3-PRP m-CDPM for tracking a desired trajectory within its wrench-feasible workspace. The secondary-task is the directional-alignment and shaping of the stiffness ellipsoid to shape the disturbance-rejection characteristics along the trajectory. The optimization is solved through constrained minimization of a multi-objective weighted cost function subject to non-linear workspace feasibility, and inequality stiffness and tension constraints.

     
    more » « less