Abstract Topology optimization has been proved to be an efficient tool for structural design. In recent years, the focus of structural topology optimization has been shifting from single material continuum structures to multimaterial and multiscale structures. This paper aims at devising a numerical scheme for designing bionic structures by combining a two-stage parametric level set topology optimization with the conformal mapping method. At the first stage, the macro-structural topology and the effective material properties are optimized simultaneously. At the second stage, another structural topology optimization is carried out to identify the exact layout of the metamaterial at the mesoscale. The achieved structure and metamaterial designs are further synthesized to form a multiscale structure using conformal mapping, which mimics the bionic structures with “orderly chaos” features. In this research, a multi-control-point conformal mapping (MCM) based on Ricci flow is proposed. Compared with conventional conformal mapping with only four control points, the proposed MCM scheme can provide more flexibility and adaptivity in handling complex geometries. To make the effective mechanical properties of the metamaterials invariant after conformal mapping, a variable-thickness structure method is proposed. Three 2D numerical examples using MCM schemes are presented, and their results and performances are compared. The achieved multimaterial multiscale structure models are characterized by the “orderly chaos” features of bionic structures while possessing the desired performance.
more »
« less
Virtual element method (VEM)-based topology optimization: an integrated framework
We present a virtual element method (VEM)-based topology optimization framework using polyhedral elements, which allows for convenient handling of non-Cartesian design domains in three dimensions. We take full advantage of the VEM properties by creating a unified approach in which the VEM is employed in both the structural and the optimization phases. In the structural problem, the VEM is adopted to solve the three-dimensional elasticity equation. Compared to the finite element method, the VEM does not require numerical integration (when linear elements are used) and is less sensitive to degenerated elements (e.g., ones with skinny faces or small edges). In the optimization problem, we introduce a continuous approximation of material densities using the VEM basis functions. When compared to the standard element-wise constant approximation, the continuous approximation enriches the geometrical representation of structural topologies. Through two numerical examples with exact solutions, we verify the convergence and accuracy of both the VEM approximations of the displacement and material density fields. We also present several design examples involving non-Cartesian domains, demonstrating the main features of the proposed VEM-based topology optimization framework. The source code for a MATLAB implementation of the proposed work, named PolyTop3D, is available in the (electronic) Supplementary Material accompanying this publication.
more »
« less
- Award ID(s):
- 1663244
- PAR ID:
- 10170741
- Date Published:
- Journal Name:
- Structural and Multidisciplinary Optimization
- ISSN:
- 1615-147X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Hsia, KJ; Rogers, JA; Suo, Z; Zhao, X (Ed.)Topology optimization algorithms often employ a smooth density function to implicitly represent geometries in a discretized domain. While this implicit representation offers great flexibility to parametrize the optimized geometry, it also leads to a transition region. Previous approaches, such as the Solid Isotropic Material Penalty (SIMP) method, have been proposed to modify the objective function aiming to converge toward integer density values and eliminate this non-physical transition region. However, the iterative nature of topology optimization renders this process computationally demanding, emphasizing the importance of achieving fast convergence. Accelerating convergence without significantly compromising the final solution can be challenging. In this work, we introduce a machine learning approach that leverages the message-passing Graph Neural Network (GNN) to eliminate the non-physical transition zone for the topology optimization problems. By representing the optimized structures as weighted graphs, we introduce a generalized filtering algorithm based on the topology of the spatial discretization. As such, the resultant algorithm can be applied to two- and three-dimensional space for both Cartesian (structured grid) and non-Cartesian discretizations (e.g. polygon finite element). The numerical experiments indicate that applying this filter throughout the optimization process may avoid excessive iterations and enable a more efficient optimization procedure.more » « less
-
Summary This study focuses on the topology optimization framework for the design of multimaterial dissipative systems at finite strains. The overall goal is to combine a soft viscoelastic material with a stiff hyperelastic material for realizing optimal structural designs with tailored damping and stiffness characteristics. To this end, several challenges associated with incorporating finite‐deformation viscoelastic‐hyperelastic materials in a multimaterial design framework are addressed. This includes consideration of a thermodynamically consistent finite‐strain viscoelasticity model for simulating energy dissipation together with F‐bar finite elements for handling material incompressibility. Moreover, an effective multimaterial interpolation scheme is proposed, which preserves the physics of material mixtures in the context of density‐based topology optimization. A numerically accurate analytical design sensitivity calculation is also presented using a path‐dependent adjoint method. Furthermore, both prescribed‐load and prescribed‐displacement boundary conditions are considered in the optimization formulations, together with various strategies for controlling stiffness. As demonstrated by the numerical examples, the use of the stiffer hyperelastic material phase in a design not only improves stiffness but also increases energy dissipation capacity. Moreover, with the finite‐deformation theory, the effect of the loading magnitude on the optimized designs can be observed.more » « less
-
Topology optimization problems are typically non-convex, and as such, multiple local minima exist. Depending on the initial design, the type of optimization algorithm and the optimization parameters, gradient-based optimizers converge to one of those minima. Unfortunately, these minima can be highly suboptimal, particularly when the structural response is very non-linear or when multiple constraints are present. This issue is more pronounced in the topology optimization of geometric primitives, because the design representation is more compact and restricted than in free-form topology optimization. In this paper, we investigate the use of tunneling in topology optimization to move from a poor local minimum to a better one. The tunneling method used in this work is a gradient-based deterministic method that finds a better minimum than the previous one in a sequential manner. We demonstrate this approach via numerical examples and show that the coupling of the tunneling method with topology optimization leads to better designs.more » « less
-
null (Ed.)Soft active materials can generate flexible locomotion and change configurations through large deformations when subjected to an external environmental stimulus. They can be engineered to design 'soft machines' such as soft robots, compliant actuators, flexible electronics, or bionic medical devices. By embedding ferromagnetic particles into soft elastomer matrix, the ferromagnetic soft matter can generate flexible movement and shift morphology in response to the external magnetic field. By taking advantage of this physical property, soft active structures undergoing desired motions can be generated by tailoring the layouts of the ferromagnetic soft elastomers. Structural topology optimization has emerged as an attractive tool to achieve innovative structures by optimizing the material layout within a design domain, and it can be utilized to architect ferromagnetic soft active structures. In this paper, the level-set-based topology optimization method is employed to design ferromagnetic soft robots (FerroSoRo). The objective function comprises a sub-objective function for the kinematics requirement and a sub-objective function for minimum compliance. Shape sensitivity analysis is derived using the material time derivative and adjoint variable method. Three examples, including a gripper, an actuator, and a flytrap structure, are studied to demonstrate the effectiveness of the proposed framework.more » « less