skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on August 17, 2026

Title: Level-Set Nonlinear Topology Optimization for Large-Deformation Compliant Mechanisms with Hyperelastic Materials
The level set method has been widely applied in topology optimization of mechanical structures, primarily for linear materials, but its application to nonlinear hyperelastic materials, particularly for compliant mechanisms, remains largely unexplored. This paper addresses this gap by developing a comprehensive level set-based topology optimization framework specifically for designing compliant mechanisms using neo-Hookean hyperelastic materials. A key advantage of hyperelastic materials is their ability to undergo large, reversible deformations, making them well-suited for soft robotics and biomedical applications. However, existing nonlinear topology optimization studies using the level set method mainly focus on stiffness optimization and often rely on linear results as preliminary approximations. Our framework rigorously derives the shape sensitivity analysis using the adjoint method, including crucial higher-order displacement gradient terms often neglected in simplified approaches. By retaining these terms, we achieve more accurate boundary evolution during optimization, leading to improved convergence behavior and more effective structural designs. The proposed approach is first validated with a mean compliance problem as a benchmark, demonstrating its ability to generate optimized structural configurations while addressing the nonlinear behavior of hyperelastic materials. Subsequently, we extend the method to design a displacement inverter compliant mechanism that fully exploits the advantages of hyperelastic materials in achieving controlled large deformations. The resulting designs feature smooth boundaries and clear structural features that effectively leverage the material's nonlinear properties. This work provides a robust foundation for designing advanced compliant mechanisms with large deformation capabilities, extending the reach of topology optimization into new application domains where traditional linear approaches are insufficient. The developed methodology is expected to provide a timely solution to computational design for soft robotics, flexible mechanisms, and other emerging technologies that benefit from hyperelastic material properties.  more » « less
Award ID(s):
2213852
PAR ID:
10634612
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
American Society of Mechanical Engineers (ASME)
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT In topology optimization of compliant mechanisms, the specific placement of boundary conditions strongly affects the resulting material distribution and performance of the design. At the same time, the most effective locations of the loads and supports are often difficult to find manually. This substantially limits topology optimization's effectiveness for many mechanism design problems. We remove this limitation by developing a method which automatically determines optimal positioning of a prescribed input displacement and a set of supports simultaneously with an optimal material layout. Using nonlinear elastic physics, we synthesize a variety of compliant mechanisms with large output displacements, snap‐through responses, and prescribed output paths, producing designs with significantly improved performance in every case tested. Compared to optimal designs generated using manually designed boundary conditions used in previous studies, the mechanisms presented in this paper see performance increases ranging from 47% to 380%. The results show that nonlinear mechanism responses may be particularly sensitive to boundary condition locations and that effective placements can be difficult to find without an automated method. 
    more » « less
  2. null (Ed.)
    Soft active materials can generate flexible locomotion and change configurations through large deformations when subjected to an external environmental stimulus. They can be engineered to design 'soft machines' such as soft robots, compliant actuators, flexible electronics, or bionic medical devices. By embedding ferromagnetic particles into soft elastomer matrix, the ferromagnetic soft matter can generate flexible movement and shift morphology in response to the external magnetic field. By taking advantage of this physical property, soft active structures undergoing desired motions can be generated by tailoring the layouts of the ferromagnetic soft elastomers. Structural topology optimization has emerged as an attractive tool to achieve innovative structures by optimizing the material layout within a design domain, and it can be utilized to architect ferromagnetic soft active structures. In this paper, the level-set-based topology optimization method is employed to design ferromagnetic soft robots (FerroSoRo). The objective function comprises a sub-objective function for the kinematics requirement and a sub-objective function for minimum compliance. Shape sensitivity analysis is derived using the material time derivative and adjoint variable method. Three examples, including a gripper, an actuator, and a flytrap structure, are studied to demonstrate the effectiveness of the proposed framework. 
    more » « less
  3. Geometry projection-based topology optimization has attracted a great deal of attention because it enables the design of structures consisting of a combination of geometric primitives and simplifies the integration with computer-aided design (CAD) systems. While the approach has undergone substantial development under the assumption of linear theory, it remains to be developed for non-linear hyperelastic problems. In this study, a geometrically non-linear explicit topology optimization approach is proposed in the framework of the geometry projection method. The energy transition strategy is adopted to mitigate excessive distortion in low-stiffness regions that might cause the equilibrium iterations to diverge. A neo-Hookean hyperelastic strain energy potential is used to model the material behavior. Design sensitivities of the functions passed to the gradient-based optimizer are detailed and verified. The proposed method is used to solve benchmark problems for which the output displacement in a compliant mechanism is maximized and the structural compliance is minimized. 
    more » « less
  4. Summary This study focuses on the topology optimization framework for the design of multimaterial dissipative systems at finite strains. The overall goal is to combine a soft viscoelastic material with a stiff hyperelastic material for realizing optimal structural designs with tailored damping and stiffness characteristics. To this end, several challenges associated with incorporating finite‐deformation viscoelastic‐hyperelastic materials in a multimaterial design framework are addressed. This includes consideration of a thermodynamically consistent finite‐strain viscoelasticity model for simulating energy dissipation together with F‐bar finite elements for handling material incompressibility. Moreover, an effective multimaterial interpolation scheme is proposed, which preserves the physics of material mixtures in the context of density‐based topology optimization. A numerically accurate analytical design sensitivity calculation is also presented using a path‐dependent adjoint method. Furthermore, both prescribed‐load and prescribed‐displacement boundary conditions are considered in the optimization formulations, together with various strategies for controlling stiffness. As demonstrated by the numerical examples, the use of the stiffer hyperelastic material phase in a design not only improves stiffness but also increases energy dissipation capacity. Moreover, with the finite‐deformation theory, the effect of the loading magnitude on the optimized designs can be observed. 
    more » « less
  5. A comparative study is presented to solve the inverse problem in elasticity for the shear modulus (stiffness) distribution utilizing two constitutive equations: (1) linear elasticity assuming small strain theory, and (2) finite elasticity with a hyperelastic neo-Hookean material model. Assuming that a material undergoes large deformations and material nonlinearity is assumed negligible, the inverse solution using (2) is anticipated to yield better results than (1). Given the fact that solving a linear elastic model is significantly faster than a nonlinear model and more robust numerically, we posed the following question: How accurately could we map the shear modulus distribution with a linear elastic model using small strain theory for a specimen undergoing large deformations? To this end, experimental displacement data of a silicone composite sample containing two stiff inclusions of different sizes under uniaxial displacement controlled extension were acquired using a digital image correlation system. The silicone based composite was modeled both as a linear elastic solid under infinitesimal strains and as a neo-Hookean hyperelastic solid that takes into account geometrically nonlinear finite deformations. We observed that the mapped shear modulus contrast, determined by solving an inverse problem, between inclusion and background was higher for the linear elastic model as compared to that of the hyperelastic one. A similar trend was observed for simulated experiments, where synthetically computed displacement data were produced and the inverse problem solved using both, the linear elastic model and the neo-Hookean material model. In addition, it was observed that the inverse problem solution was inclusion size-sensitive. Consequently, an 1-D model was introduced to broaden our understanding of this issue. This 1-D analysis revealed that by using a linear elastic approach, the overestimation of the shear modulus contrast between inclusion and background increases with the increase of external loads and target shear modulus contrast. Finally, this investigation provides valuable information on the validity of the assumption for utilizing linear elasticity in solving inverse problems for the spatial distribution of shear modulus associated with soft solids undergoing large deformations. Thus, this work could be of importance to characterize mechanical property variations of polymer based materials such as rubbers or in elasticity imaging of tissues for pathology. 
    more » « less