skip to main content


Title: Learning Embeddings of Intersections on Road Networks
Road network is a basic component of intelligent transportation systems (ITS) in smart city. Informative representation of road networks is important as it is essential to a wide variety of ITS applications. In this paper, we propose a neural network representation learning model, namely Intersection of Road Network to Vector (IRN2Vec), to learn embeddings of road intersections that encode rich information in a road network by exploring geo-locality and intrinsic properties of intersections and moving behaviors of road users. In addition to model design, several issues unique to IRN2Vec, including data preparation for model training and various relationships among intersections, are examined. We evaluate the learned embeddings via extensive experiments on three real-world datasets using three downstream test cases, including prediction of traffic signals and crossings on intersections and travel time estimation. Experimental results show that the proposed IRN2Vec outperforms three existing methods, DeepWalk, LINE and Node2vec, in terms of F1-score in predicting traffic signals (22.21% to 23.84%) and crossings (8.65% to 11.65%), and mean absolute error (MAE) in travel time estimation (9.87% to 19.28%).  more » « less
Award ID(s):
1717084
NSF-PAR ID:
10170811
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Proceedings of the 27th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems
Page Range / eLocation ID:
309 to 318
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Informative representation of road networks is essential to a wide variety of applications on intelligent transportation systems. In this article, we design a new learning framework, called Representation Learning for Road Networks (RLRN), which explores various intrinsic properties of road networks to learn embeddings of intersections and road segments in road networks. To implement the RLRN framework, we propose a new neural network model, namely Road Network to Vector (RN2Vec), to learn embeddings of intersections and road segments jointly by exploring geo-locality and homogeneity of them, topological structure of the road networks, and moving behaviors of road users. In addition to model design, issues involving data preparation for model training are examined. We evaluate the learned embeddings via extensive experiments on several real-world datasets using different downstream test cases, including node/edge classification and travel time estimation. Experimental results show that the proposed RN2Vec robustly outperforms existing methods, including (i) Feature-based methods : raw features and principal components analysis (PCA); (ii) Network embedding methods : DeepWalk, LINE, and Node2vec; and (iii) Features + Network structure-based methods : network embeddings and PCA, graph convolutional networks, and graph attention networks. RN2Vec significantly outperforms all of them in terms of F1-score in classifying traffic signals (11.96% to 16.86%) and crossings (11.36% to 16.67%) on intersections and in classifying avenue (10.56% to 15.43%) and street (11.54% to 16.07%) on road segments, as well as in terms of Mean Absolute Error in travel time estimation (17.01% to 23.58%). 
    more » « less
  2. Estimating the travel time for a given path is a fundamental problem in many urban transportation systems. However, prior works fail to well capture moving behaviors embedded in paths and thus do not estimate the travel time accurately. To fill in this gap, in this work, we propose a novel neural network framework, namely Deep Image-based Spatio-Temporal network (DeepIST), for travel time estimation of a given path. The novelty of DeepIST lies in the following aspects:1) we propose to plot a path as a sequence of -generalized images"which include sub-paths along with additional information, such as traffic conditions, road network and traffic signals, in order to harness the power of convolutional neural network model (CNN)on image processing; 2) we design a novel two-dimensional CNN, namely PathCNN, to extract spatial patterns for lines in images by regularization and adopting multiple pooling methods; and 3) we apply a one-dimensional CNN to capture temporal patterns among the spatial patterns along the paths for the estimation. Empirical results show that DeepIST soundly outperforms the state-of-the-art travel time estimation models by 24.37% to 25.64% of mean absolute error (MAE) in multiple large-scale real-world datasets. 
    more » « less
  3. Even though extensive studies have developed various eco-driving strategies for vehicle platoon to travel on urban roads with traffic signals, most of them focus on vehicle-level trajectory planning or speed advisory rather than real-time platoon-level closed-loop control. In addition, majority of existing efforts neglect the traffic and vehicle dynamic uncertainties to avoid the modeling and solution complexity. To make up these research gaps, this study develops a system optimal vehicle platooning control for eco-driving (SO-ED), which can guide a mixed flow platoon to smoothly run on the urban roads and pass the signalized intersections without sudden deceleration or red idling. The SO-ED is mathematically implemented by a hybrid model predictive control (MPC) system, including three MPC controllers and an MINLP platoon splitting switching signal. Based on the features of the system, this study uses active set method to solve the large-scale MPC controllers in real time. The numerical experiments validate the merits of the proposed SO-ED in smoothing the traffic flow and reducing energy consumption and emission at urban signalized intersections. 
    more » « less
  4. Imputing missing data is a critical task in data-driven intelligent transportation systems. During recent decades there has been a considerable investment in developing various types of sensors and smart systems, including stationary devices (e.g., loop detectors) and floating vehicles equipped with global positioning system (GPS) trackers to collect large-scale traffic data. However, collected data may not include observations from all road segments in a traffic network for different reasons, including sensor failure, transmission error, and because GPS-equipped vehicles may not always travel through all road segments. The first step toward developing real-time traffic monitoring and disruption prediction models is to estimate missing values through a systematic data imputation process. Many of the existing data imputation methods are based on matrix completion techniques that utilize the inherent spatiotemporal characteristics of traffic data. However, these methods may not fully capture the clustered structure of the data. This paper addresses this issue by developing a novel data imputation method using PARATUCK2 decomposition. The proposed method captures both spatial and temporal information of traffic data and constructs a low-dimensional and clustered representation of traffic patterns. The identified spatiotemporal clusters are used to recover network traffic profiles and estimate missing values. The proposed method is implemented using traffic data in the road network of Manhattan in New York City. The performance of the proposed method is evaluated in comparison with two state-of-the-art benchmark methods. The outcomes indicate that the proposed method outperforms the existing state-of-the-art imputation methods in complex and large-scale traffic networks.

     
    more » « less
  5. As Autonomous Vehicles (AVs) become possible for E-hailing services operate, especially when telecom companies start deploying next-generation wireless networks (known as 5G), many new technologies may be applied in these vehicles. Dynamic-route-switching is one of these technologies, which could help vehicles find the best possible route based on real-time traffic information. However, allowing all AVs to choose their own optimal routes is not the best solution for a complex city network, since each vehicle ignores its negative effect on the road system due to the additional congestion it creates. As a result, with this system, some of the links may become over-congested, causing the whole road network system performance to degrade. Meanwhile, the travel time reliability, especially during the peak hours, is an essential factor to improve the customers' ride experience. Unfortunately, these two issues have received relatively less attention. In this paper, we design a link-based dynamic pricing model to improve the road network system and travel time reliability at the same time. In this approach, we assume that all links are eligible with the dynamic pricing, and AVs will be perfect informed with update traffic condition and follow the dynamic road pricing. A heuristic approach is developed to address this computationally difficult problem. The output includes link-based surcharge, new travel demand and traffic condition which would improve the system performance close to the System Optimal (SO) solution and maintain the travel time reliability. Finally, we evaluate the effectiveness and efficiency of the proposed model to the well-known test Sioux Falls network. 
    more » « less