skip to main content


Title: Nonsequential double ionization of Ar in near-single-cycle laser pulses

Using the improved quantitative rescattering (QRS) model, we simulate the correlated two-electron momentum distributions (CMD) for nonsequential double ionization (NSDI) of Ar by near-single-cycle laser pulses with a wavelength of 750 nm at an intensity of 2.8 × 1014W/cm2. With the accurate cross sections obtained from fully quantum mechanical calculations for both electron impact excitation and electron impact ionization of Ar+, we unambiguously identify the contributions from recollision direct ionization (RDI) and recollision excitation with subsequent ionization (RESI). Our analysis reveals that RESI constitutes the main contribution to NSDI of Ar under the conditions considered here. The simulated results are directly compared with experimental measurements [Bergueset al.,Nat. Commun.3,813(2012)10.1038/ncomms1807] in which each NSDI event is tagged with the carrier-envelope phase (CEP). It is found that the overall pattern of both the CEP-resolved and the CEP-averaged CMDs measured in experiment are well reproduced by the QRS model, and the cross-shaped structure in the CEP-averaged CMD is attributed to the strong forward scattering of the recolliding electron as well as the depletion effect in tunneling ionization of the electron from an excited state of the parent ion.

 
more » « less
Award ID(s):
1834740 1803844
NSF-PAR ID:
10170945
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Express
Volume:
28
Issue:
15
ISSN:
1094-4087; OPEXFF
Page Range / eLocation ID:
Article No. 22231
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Using the quantitative rescattering model, we simulate the correlated two-electron momentum distributions for nonsequential double ionization of helium by 800 nm laser pulses at intensities in the range of (2 − 15) × 1014W/cm2. The experimentally observed V-shaped structure at high intensities [Phys. Rev. Lett.99,263003(2007)10.1103/PhysRevLett.99.263003] is attributed to the strong forward scattering in laser-induced recollision excitation and the asymmetric momentum distribution of electrons that are tunneling-ionized from the excited states. The final-state electron repulsion also plays an important role in forming the V-shaped structure.

     
    more » « less
  2. Within the framework of the improved quantitative rescattering (QRS) model, we simulate the correlated two-electron momentum distributions (CMDs) for nonsequential double ionization (NSDI) of Ar by elliptically polarized laser pulses with a wavelength of 788 nm at an intensity of 0.7 × 1014W/cm2for the ellipticities ranging from 0 to 0.3. Only the CMDs for recollision excitation with subsequent ionization (RESI) are calculated and the contribution from recollision direct ionization is neglected. According to the QRS model, the CMD for RESI can be factorized as a product of the parallel momentum distribution (PMD) for the first released electron after recollision and the PMD for the second electron ionized from an excited state of the parent ion. The PMD for the first electron is obtained from the laser-free differential cross sections for electron impact excitation of Ar+calculated using state-of-the-art many-electronR-matrix theory while that for the second electron is evaluated by solving the time-dependent Schrödinger equation. The results show that the CMDs for all the ellipticities considered here exhibit distinct anticorrelated back-to-back emission of the electrons along the major polarization direction, and the anticorrelation is more pronounced with increasing ellipticity. It is found that anticorrelation is attributed to the pattern of the PMD for the second electron ionized from the excited state that, in turn, is caused by the delayed recollision time with respect to the instant of the external field crossing. Our work shows that both the ionization potential of the excited parent ion and the laser intensity play important roles in the process.

     
    more » « less
  3. Structural optical coherence tomography (OCT) images of tissue stand to benefit from greater functionalization and quantitative interpretation. The OCT attenuation coefficientµ, an analogue of the imaged sample’s scattering coefficient, offers potential functional contrast based on the relationship ofµto sub-resolution physical properties of the sample. Attenuation coefficients are computed either by fitting a representativeµover several depth-wise pixels of a sample’s intensity decay, or by using previously-developed depth-resolved attenuation algorithms by Girardet al.[Invest. Ophthalmol. Vis. Sci.52,7738(2011).10.1167/iovs.10-6925] and Vermeeret al.[Biomed. Opt. Express5,322(2014).10.1364/BOE.5.000322]. However, the former method sacrifices axial information in the tomogram, while the latter relies on the stringent assumption that the sample’s backscattering fraction, another optical property, does not vary along depth. This assumption may be violated by layered tissues commonly observed in clinical imaging applications. Our approach preserves the full depth resolution of the attenuation map but removes its dependence on backscattering fraction by performing signal analysis inside individual discrete layers over which the scattering properties (e.g., attenuation and backscattering fraction) vary minimally. Although this approach necessitates the detection of these layers, it removes the constant-backscattering-fraction assumption that has constrained quantitative attenuation coefficient analysis in the past, and additionally yields a layer-resolved backscattering fraction, providing complementary scattering information to the attenuation coefficient. We validate our approach using automated layer detection in layered phantoms, for which the measured optical properties were in good agreement with theoretical values calculated with Mie theory, and show preliminary results in tissue alongside corresponding histological analysis. Together, accurate backscattering fraction and attenuation coefficient measurements enable the estimation of both particle density and size, which is not possible from attenuation measurements alone. We hope that this improvement to depth-resolved attenuation coefficient measurement, augmented by a layer-resolved backscattering fraction, will increase the diagnostic power of quantitative OCT imaging.

     
    more » « less
  4. We theoretically study the spectral properties of a pump–probe driven hybrid spinning optomechanical ring resonator optically coupled with a two-level quantum emitter (QE or qubit). Recently, we have shown [Opt. Express27,25515(2019)OPEXFF1094-408710.1364/OE.27.025515] that in the absence of the emitter, the coupled cavity version of this setup is not only capable of non-reciprocal light propagation but can also exhibit slow and fast light propagation. In this work, we investigate in what ways the presence of a single QE coupled with the optical whispering gallery modes of a spinning optomechanical resonator can alter the probe light non-reciprocity. Under the weak-excitation assumption and mean-field approximation, we find that the interplay between the rotational/spinning Sagnac effect and qubit coupling can lead to enhancement of both the optomechanically induced transparency peak value and the width of the transparency window due to the opening of a qubit-assisted backreflection channel. However, compared to the no-qubit case, we notice that such enhancement comes at the cost of degrading the group delay in probe light transmission by a factor of 1/2 for clockwise rotary directions. The target applications of these results can be in the areas of quantum circuitry and in non-reciprocal quantum communication protocols where QEs are a key component.

     
    more » « less
  5. Real-time transrectal ultrasound (TRUS) image guidance during robot-assisted laparoscopic radical prostatectomy has the potential to enhance surgery outcomes. Whether conventional or photoacoustic TRUS is used, the robotic system and the TRUS must be registered to each other. Accurate registration can be performed using photoacoustic (PA markers). However, this requires a manual search by an assistant [IEEE Robot. Autom. Lett8,1287(2023).10.1109/LRA.2022.3191788]. This paper introduces the first automatic search for PA markers using a transrectal ultrasound robot. This effectively reduces the challenges associated with the da Vinci-TRUS registration. This paper investigated the performance of three search algorithms in simulation and experiment: Weighted Average (WA), Golden Section Search (GSS), and Ternary Search (TS). For validation, a surgical prostate scenario was mimicked and variousex vivotissues were tested. As a result, the WA algorithm can achieve 0.53°±0.30° average error after 9 data acquisitions, while the TS and GSS algorithm can achieve 0.29±0.31and 0.48°±0.32° average errors after 28 data acquisitions.

     
    more » « less