skip to main content

Title: Hurricane Deposits on Carbonate Platforms: a case study of Hurricane Irma deposits on Little Ambergris Cay, Turks and Caicos Islands
The study of modern hurricane deposits is useful both in identifying ancient hurricane deposits in the rock record and predicting patterns of deposition and erosion produced by future storm events. Hurricane deposits on carbonate platforms have been studied less frequently than those along continental coasts. Here we present observations of the characteristics of deposition and scour caused by Hurricane Irma on Little Ambergris Cay, a small uninhabited island located near the southeastern edge of the Caicos platform in the Turks and Caicos Islands. Hurricane Irma passed directly over Little Ambergris Cay on September 7, 2017 as a Category 5 hurricane. We described and sampled multiple types of hurricane deposits and determined that the washover fans were the best sedimentological records for hurricane conditions, as they were subject to very little reworking over time. We compared different model predictions of storm tide and wave height with eyewitness reports and distributions of scour. Examining the washover fans allowed for the construction of a conceptual model for hurricane deposits formed in a high‐energy storm event on a carbonate platform. Characteristics of the washover fans were their small size, the lack of sedimentary structures, and very well‐sorted sediment. The size and distribution of carbonate boulders eroded and transported by the storm are consistent with depth‐averaged flow velocities in the range of 1.5‐5.3 m/s. The strength of the storm and the low‐lying topography, distinct features of a carbonate platform setting, contributed to high levels of sediment bypass and high flow velocities, resulting in small, unstructured deposits.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Journal of Geophysical Research: Earth Surface
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Hurricane Irma (September 2017) was one of the most devastating hurricanes in recent times. In January 2018, a post‐hurricane field survey was conducted on Anegada (British Virgin Islands) to report on the erosional and depositional evidence caused by Hurricane Irma's storm surge and waves. We document the type and extent of hurricane‐induced geomorphological changes, allowing for an improved risk assessment of hurricane‐related inundation on low‐lying islands and carbonate platforms.

    Anegada's north shore was most impacted by Hurricane Irma. The surge reached about 3.8 m above sea level and onshore flow depths ranged between 1.2 to 1.6 m. Storm wave action created 1 to 1.5 m high erosional scarps along the beaches, and the coastline locally retreated by 6 to 8 m.

    Onshore sand sheets reached up to 40 m inland, overlie a sharp erosive contact and have thicknesses of 7 to 35 cm along the north shore. In contrast, lobate overwash fans in the south are 2 to 10 cm thick and reach 10 to 30 m inland.

    Moreover, the hurricane reworked a pre‐existing coast‐parallel coral rubble ridge on the central north shore. The crest of the coral rubble ridge shifted up to 10 m inland due to the landward transport of cobbles and boulders (maximum size 0.5 m3) that were part of the pre‐hurricane ridge.

    A re‐survey, 18 months after the event, assessed the degree of the natural coastal recovery. The sand along the northern shoreline of Anegada that was eroded during the hurricane and stored in the shallow water, acted as a nearshore source for beach reconstruction which set in only days after the event. Beach recovery peaked in February 2018, when beaches accreted within hours during a nor'easter‐like storm that transported large volumes of nearshore sand back onto the beach.

    more » « less
  2. Hurricanes can alter the rates and trajectories of biogeochemical cycling in coastal wetlands. Defoliation and vegetation death can lead to increased soil temperatures, and storm surge can variously cause erosion or deposition of sediment leading to changes in soil bulk density, nutrient composition, and redox characteristics. The objective of this study was to compare the biogeochemistry of pre-storm soils and a carbonate-rich sediment layer deposited by Hurricane Irma that made landfall in southwest Florida as a category 3 storm in September 2017. We predicted that indicators of biogeochemical activity (e.g., potential soil respiration rates, microbial biomass (MBC), and extracellular enzyme activities) would be lower in the storm sediment layer because of its lower organic matter content relative to pre-storm soils. There were few differences between the storm sediment and pre-storm soils at two of the sites closest to the Gulf of Mexico (GOM). This suggests that marine deposition regularly influences soil formation at these sites and is not something that occurs only during hurricanes. At a third site, 8 km from the GOM, the pre-storm soils had much greater concentrations of organic matter, total N, total P, MBC, and higher potential respiration rates than the storm layer. At this same site, CO2 fluxes from intact soil cores containing a layer of storm sediment were 30% lower than those without it. This suggests that sediment deposition from storm surge has the potential to preserve historically sequestered carbon in coastal soils through reduced respiratory losses. 
    more » « less
  3. Mangrove forests along the coastlines of the tropical and sub-tropical western Atlantic are intermittently impacted by hurricanes and can be damaged by high-speed winds, high-energy storm surges, and storm surge sediment deposits that suffocate tree roots. This study quantified trends in damage, delayed mortality, and early signs of below- and aboveground recovery in mangrove forests in the Lower Florida Keys and Ten Thousand Islands following direct hits by Hurricane Irma in September 2017. Mangrove trees suffered 19% mortality at sites in the Lower Florida Keys and 11% in the Ten Thousand Islands 2–3 months post-storm; 9 months post-storm, mortality in these locations increased to 36% and 20%, respectively. Delayed mortality of mangrove trees was associated with the presence of a carbonate mud storm surge deposit on the forest floor. Mortality and severe branch damage were more common for mangrove trees than for mangrove saplings. Canopy coverage increased from 40% cover 1–2 months post-storm to 60% cover 3–6 months post-storm. Canopy coverage remained the same 9 months post-storm, providing light to an understory of predominantly Rhizophora mangle (red mangrove) seedlings. Soil shear strength was higher in the Lower Florida Keys and varied with depth; no significant trends were found in shear strength between fringe or basin plots. Rates of root growth, as assessed using root in-growth bags, were relatively low at 0.01–11.0 g m−2 month−1 and were higher in the Ten Thousand Islands. This study demonstrated that significant delayed mangrove mortality can occur 3–9 months after a hurricane has passed, with some mortality attributable to smothering by storm surge deposits. 
    more » « less
  4. International Ocean Discovery Program (IODP) Expedition 357 successfully cored an east–west transect across the southern wall of Atlantis Massif on the western flank of the Mid-Atlantic Ridge (MAR) to study the links between serpentinization processes and microbial activity in the shallow subsurface of highly altered ultramafic and mafic sequences that have been uplifted to the seafloor along a major detachment fault zone. The primary goals of this expedition were to (1) examine the role of serpentinization in driving hydrothermal systems, sustaining microbial communities, and sequestering carbon; (2) characterize the tectonomagmatic processes that lead to lithospheric heterogeneities and detachment faulting; and (3) assess how abiotic and biotic processes change with variations in rock type and progressive exposure on the seafloor. To accomplish these objectives, we developed a coring and sampling strategy centered on the use of seabed drills—the first time that such systems have been used in the scientific ocean drilling programs. This technology was chosen in the hope of achieving high recovery of the carbonate cap sequences and intact contact and deformation relationships. The expedition plans also included several engineering developments to assess geochemical parameters during drilling; sample bottom water before, during, and after drilling; supply synthetic tracers during drilling for contamination assessment; acquire in situ electrical resistivity and magnetic susceptibility measurements for assessing fractures, fluid flow, and extent of serpentinization; and seal boreholes to provide opportunities for future experiments. Expedition 359 was designed to address changes in sea level and currents, along with monsoon evolution in the Indian Ocean. The Maldives archipelago holds a unique and mostly unread Indian Ocean archive of the evolving Cenozoic icehouse world. Cores from eight drill sites in the Inner Sea of the Maldives provide the tropical marine record that is key for better understanding the effects of this global evolution in the Indo-Pacific realm. In addition, the bank geometries of the carbonate archipelago provide a physical record of changing sea level and ocean currents. The bank growth occurs in pulses of aggradation and progradation that are controlled by sea level fluctuations during the early and middle Miocene, including the mid-Miocene Climate Optimum. A dramatic shift in development of the carbonate edifice from a sea level–controlled to a predominantly current-controlled system appears to be directly linked to the evolving Indian monsoon. This phase led to a twofold configuration of bank development: bank growth continued in some parts of the edifice, whereas in other places, banks drowned. Drowning steps seem to coincide with onset and intensification of the monsoon-related current system and subsequent deposition of contourite fans and large-scale sediment drifts. As such, the drift deposits will provide a continuous record of Indian monsoon development in the region of the Maldives. A major focus of Expedition 359 was to date precisely the onset of the current system. This goal was successfully completed during the expedition. The second important outcome of Expedition 359 was groundtruthing the hypothesis that the dramatic, pronounced change in style of the carbonate platform sequence stacking was caused by a combination of relative sea level fluctuations and ocean current system changes. These questions are directly addressed by the shipboard scientific data. In addition, Expedition 359 cores will provide a complete Neogene δ13C record of the platform and platform margin sediments and a comparison with pelagic records over the same time period. This comparison will allow assessment of the extent to which platform carbonates record changes in the global carbon cycle and whether changes in the carbon isotopic composition of organic and inorganic components covary and the implications this has on the deep-time record. This determination is important because such records are the only type that exists in deep time. 
    more » « less
  5. Hurricanes are recurring high-energy disturbances in coastal regions that change community structure and function of mangrove wetlands. However, most of the studies assessing hurricane impacts on mangroves have focused on negative effects without considering the positive influence of hurricane-induced sediment deposition and associated nutrient fertilization on mangrove productivity and resilience. Here, we quantified how Hurricane Irma influenced soil nutrient pools, vertical accretion, and plant phosphorus (P) uptake after its passage across the Florida Coastal Everglades in September 2017. Vertical accretion from Irma’s deposits was 6.7 to 14.4 times greater than the long-term (100 y) annual accretion rate (0.27 ± 0.04 cm y−1). Storm deposits extended up to 10-km inland from the Gulf of Mexico. Total P (TP) inputs were highest at the mouth of estuaries, with P concentration double that of underlying surface (top 10 cm) soils (0.19 ± 0.02 mg cm−3). This P deposition contributed 49 to 98% to the soil nutrient pool. As a result, all mangrove species showed a significant increase in litter foliar TP and soil porewater inorganic P concentrations in early 2018, 3 mo after Irma’s impact, thus underscoring the interspecies differences in nutrient uptake. Mean TP loading rates were five times greater in southwestern (94 ± 13 kg ha−1d−1) mangrove-dominated estuaries compared to the southeastern region, highlighting the positive role of hurricanes as a natural fertilization mechanism influencing forest productivity. P-rich, mineral sediments deposited by hurricanes create legacies that facilitate rapid forest recovery, stimulation of peat soil development, and resilience to sea-level rise.

    more » « less